GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2014
    In:  Science Vol. 346, No. 6215 ( 2014-12-12), p. 1311-1320
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 346, No. 6215 ( 2014-12-12), p. 1311-1320
    Abstract: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2014
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2006
    In:  Proteins: Structure, Function, and Bioinformatics Vol. 65, No. 3 ( 2006-11-15), p. 643-655
    In: Proteins: Structure, Function, and Bioinformatics, Wiley, Vol. 65, No. 3 ( 2006-11-15), p. 643-655
    Abstract: The EF‐hand protein with a helix–loop–helix Ca 2+ binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca 2+ in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF‐hand and EF‐like Ca 2+ ‐binding proteins. The canonical EF‐hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N‐ and C‐terminal EF‐hands within S100 and S100‐like proteins, a new signature profile has been established to allow for the identification of pseudo EF‐hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF‐hands. Furthermore, using the developed patterns, we have identified zero pseudo EF‐hand motif and 467 canonical EF‐hand Ca 2+ binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF‐hand motifs are phylogenetically younger than canonical EF‐hand motifs. Our prediction of Ca 2+ binding motifs provides not only an insight into the role of Ca 2+ and Ca 2+ ‐binding proteins in bacterial systems, but also a way to explore and define the role of Ca 2+ in other biological systems (calciomics). Proteins 2006. © 2006 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 0887-3585 , 1097-0134
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 1475032-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 37 ( 2022-09-13)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 37 ( 2022-09-13)
    Abstract: Glaciers are key components of the mountain water towers of Asia and are vital for downstream domestic, agricultural, and industrial uses. The glacier mass loss rate over the southeastern Tibetan Plateau is among the highest in Asia and has accelerated in recent decades. This acceleration has been attributed to increased warming, but the mechanisms behind these glaciers’ high sensitivity to warming remain unclear, while the influence of changes in precipitation over the past decades is poorly quantified. Here, we reconstruct glacier mass changes and catchment runoff since 1975 at a benchmark glacier, Parlung No. 4, to shed light on the drivers of recent mass losses for the monsoonal, spring-accumulation glaciers of the Tibetan Plateau. Our modeling demonstrates how a temperature increase (mean of 0.39 ∘ C ⋅dec −1 since 1990) has accelerated mass loss rates by altering both the ablation and accumulation regimes in a complex manner. The majority of the post-2000 mass loss occurred during the monsoon months, caused by simultaneous decreases in the solid precipitation ratio (from 0.70 to 0.56) and precipitation amount (–10%), leading to reduced monsoon accumulation (–26%). Higher solid precipitation in spring (+18%) during the last two decades was increasingly important in mitigating glacier mass loss by providing mass to the glacier and protecting it from melting in the early monsoon. With bare ice exposed to warmer temperatures for longer periods, icemelt and catchment discharge have unsustainably intensified since the start of the 21st century, raising concerns for long-term water supply and hazard occurrence in the region.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 373, No. 6555 ( 2021-08-06), p. 642-648
    Abstract: Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo–electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6573 ( 2021-12-10), p. 1353-1360
    Abstract: The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...