GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (8)
  • Yang, Can  (8)
Material
Publisher
  • MDPI AG  (8)
Language
Years
  • 1
    In: Molecules, MDPI AG, Vol. 27, No. 2 ( 2022-01-11), p. 462-
    Abstract: Phosphogypsum (PG) treatment is one of the research hotspots in the field of environmental protection. Many researchers both at home and abroad have devoted themselves to studies on harmless resource treatment of PG, but the treatment technology is unable to meet the demand of PG consumption due to the huge production and storage demands. In order to solve the problem of PG pollution, this study explored the different solidified effects of various modification formulations on the hazardous components in PG, using industrial solid waste calcium carbide slag (CCS) as an alkaline regulator; Portland cement (PC), polyaluminum chloride (PAC) and CaCl2 as the main raw materials of the solidification and stabilization formula and the water content in PG as the reaction medium. The results showed that CCS (0.5%), PC (0.4%) and PAC (0.3%) had a more significant solidified effect on phosphorus (P) and fluoride (F). PAC was added in two steps and reacted under normal temperature and pressure, and its leaching toxicity meets the requirements of relevant standards, which laid an excellent foundation for PG-based ecological restoration materials and filling materials, with low economic cost, simple process and strong feasibility. This will provide great convenience for the later mining and metallurgy.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Micromachines, MDPI AG, Vol. 15, No. 3 ( 2024-03-11), p. 374-
    Abstract: The process of forming metal components through selective laser melting (SLM) results in inherent spherical effects, powder adhesion, and step effects, which collectively lead to surface roughness in stainless steel, limiting its potential for high-end applications. This study utilizes a laser-electrochemical hybrid process to polish SLM-formed 316L stainless steel (SS) and examines the influence of process parameters such as laser power and scanning speed on surface roughness and micro-morphology. A comparative analysis of the surface roughness, microstructure, and wear resistance of SLM-formed 316L SS polished using laser, electrochemical, and laser-electrochemical hybrid processes is presented. The findings demonstrate that, compared to laser and electrochemical polishing alone, the laser-electrochemical hybrid polishing exhibits the most significant improvement in surface roughness and the highest material wear resistance. Additionally, the hybrid process results in a surface free of cracks and only a small number of tiny corrosion holes, making it more suitable for polishing the surface of 316L SS parts manufactured via SLM.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Micromachines, MDPI AG, Vol. 14, No. 4 ( 2023-04-14), p. 850-
    Abstract: Recently, laser polishing, as an effective post-treatment technology for metal parts fabricated by laser powder bed fusion (LPBF), has received much attention. In this paper, LPBF-ed 316L stainless steel samples were polished by three different types of lasers. The effect of laser pulse width on surface morphology and corrosion resistance was investigated. The experimental results show that, compared to the nanosecond (NS) and femtosecond (FS) lasers, the surface material’s sufficient remelting realized by the continuous wave (CW) laser results in a significant improvement in roughness. The surface hardness is increased and the corrosion resistance is the best. The microcracks on the NS laser-polished surface lead to a decrease in the microhardness and corrosion resistance. The FS laser does not significantly improve surface roughness. The ultrafast laser-induced micro-nanostructures increase the contact area of the electrochemical reaction, resulting in a decrease in corrosion resistance.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Polymers, MDPI AG, Vol. 15, No. 1 ( 2022-12-28), p. 120-
    Abstract: The problem of bacteria-induced infections threatens the lives of many patients. Meanwhile, the misuse of antibiotics has led to a significant increase in bacterial resistance. There are two main ways to alleviate the issue: one is to introduce antimicrobial agents to medical devices to get local drug releasing and alleviating systemic toxicity and resistance, and the other is to develop new antimicrobial methods to kill bacteria. New antimicrobial methods include cationic polymers, metal ions, hydrophobic structures to prevent bacterial adhesion, photothermal sterilization, new biocides, etc. Biodegradable biocompatible synthetic polymers have been widely used in the medical field. They are often used in tissue engineering scaffolds as well as wound dressings, where bacterial infections in these medical devices can be serious or even fatal. However, such materials usually do not have inherent antimicrobial properties. They can be used as carriers for drug delivery or compounded with other antimicrobial materials to achieve antimicrobial effects. This review focuses on the antimicrobial behavior, preparation methods, and biocompatibility testing of biodegradable biocompatible synthetic polymers. Degradable biocompatible natural polymers with antimicrobial properties are also briefly described. Finally, the medical applications of these polymeric materials are presented.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 18 ( 2022-09-10), p. 10500-
    Abstract: Calmodulin-binding transcription activator (CAMTA) is a transcription factor family containing calmodulin (CaM) binding sites and is involved in plant development. Although CAMTAs in Arabidopsis have been extensively investigated, the functions of CAMTAs remain largely unclear in peaches. In this study, we identified five peach CAMTAs which contained conserved CG-1 box, ANK repeats, CaM binding domain (CaMBD) and IQ motifs. Overexpression in tobacco showed that PpCAMTA1/2/3 were located in the nucleus, while PpCAMTA4 and PpCAMTA5 were located in the plasma membrane. Increased expression levels were observed for PpCAMTA1 and PpCAMTA3 during peach fruit ripening. Expression of PpCAMTA1 was induced by cold treatment and was inhibited by ultraviolet B irradiation (UV-B). Driven by AtCAMTA3 promoter, PpCAMTA1/2/3 were overexpressed in Arabidopsis mutant. Here, we characterized peach PpCAMTA1, representing an ortholog of AtCAMTA3. PpCAMTA1 expression in Arabidopsis complements the developmental deficiencies of the camta2,3 mutant, and restored the plant size to the wild type level. Moreover, overexpressing PpCAMTA1 in camta2,3 mutant inhibited salicylic acid (SA) biosynthesis and expression of SA-related genes, resulting in a susceptibility phenotype to Pst DC3000. Taken together, our results provide new insights for CAMTAs in peach fruit and indicate that PpCAMTA1 is associated with response to stresses during development.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Applied Sciences Vol. 10, No. 3 ( 2020-01-27), p. 865-
    In: Applied Sciences, MDPI AG, Vol. 10, No. 3 ( 2020-01-27), p. 865-
    Abstract: Increasingly more enterprises are intending to deploy data management systems in the cloud. However, the complexity of software development significantly increases both time and learning costs of data management system development. In this paper, we investigate the coding-free construction of a data management system based on Software-as-a-Service (SaaS) architecture, in which a practical application platform and a set of construction methods are proposed. Specifically, by extracting the common features of data management systems, we design a universal web platform to quickly generate and publish customized system instances. Then, we propose a method to develop a lightweight data management system using a specific requirements table in a spreadsheet. The corresponding platform maps the requirements table into a system instance by parsing the table model and implementing the objective system in the running stage. Finally, we implement the proposed framework and deploy it on the web. The empirical results demonstrate the feasibility and availability of the coding-free method for developing lightweight web data management systems.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Photonics, MDPI AG, Vol. 9, No. 10 ( 2022-09-22), p. 684-
    Abstract: A photovoltaic panels is a device used for converting solar and other energy into electrical energy. In laser wireless power transmission, there is a problem that the conversion efficiency of the photovoltaic panel is not as high as that of a single photovoltaic cell, and the output power is not as large as expected. This is not conducive to the popularization and use of wireless power transmission via laser. It is important to find out why the output power of the photovoltaic panel irradiated by lasers is not high. According to the laser intensity distribution equation, it is deduced that the laser in a very small area has an equivalent uniformity intensity distribution through the comparative calculation of the light intensity of two adjacent points. Then, the input non-uniform laser can be broken down into many equivalent uniform small lasers with different light intensity values. Based on this theory, the photovoltaic array model under laser was established, and it was simulated by MATLAB/Simulink. The simulation results reveal that the greater the difference between the light intensity values of these small spots, that is to say, the more non-uniform the laser, the lower the output power of the photovoltaic module illuminated by it. A multi-wavelength experimental platform was built, and comparative experiments of laser wireless power transmission were carried out using three kinds of lasers: 808, 532, and 1030 nm. The experimental result was in good agreement with the simulation result. The above results show that the deduced theory and the model based on it are correct.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 20, No. 1 ( 2022-12-31), p. 746-
    Abstract: PM2.5, a type of particulate matter with an aerodynamic diameter of less than 2.5 μm, is associated with the occurrence of cardiovascular diseases (CVDs), while greenness seems to be associated with better cardiovascular health. We identified 499,336 CVD cases in Wuhan’s 74 municipal hospitals between 2017 and 2019. A high-resolution PM2.5 model and a normalized difference vegetation index (NDVI) map were established to estimate individual exposures. The time-stratified case-crossover design and conditional logistic regression models were applied to explore the associations between PM2.5 and CVDs under different levels of environmental factors. Greenness could alleviate PM2.5-induced hospitalization risks of cardiovascular diseases. Compared with patients in the low-greenness group (ER = 0.99%; 95% CI: 0.71%, 1.28%), patients in the high-greenness group (ER = 0.45%; 95% CI: 0.13%, 0.77%) showed a lower increase in total CVD hospitalizations. After dividing the greenness into quartiles and adding long-term PM2.5 exposure as a control factor, no significant PM2.5-associated hospitalization risks of CVD were identified in the greenest areas (quartile 4), whether the long-term PM2.5 exposure level was high or low. Intriguingly, in the least green areas (quartile 1), the PM2.5-induced excess risk of CVD hospitalization was 0.58% (95% CI: 0.04%, 1.11%) in the long-term high-level PM2.5 exposure group, and increased to 1.61% (95% CI: 0.95%, 2.27%) in the long-term low-level PM2.5 exposure group. In the subgroup analysis, males and participants aged 55–64 years showed more significant increases in the PM2.5-induced risk of contracting CVDs with a reduction in greenness and fine particle exposure conditions. High residential greenness can greatly alleviate the PM2.5-induced risk of cardiovascular admission. Living in the areas with long-term low-level PM2.5 may make people more sensitive to short-term increases in PM2.5, leading to CVD hospitalization.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...