GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Yamaue, Hiroki  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 3890-3890
    Abstract: Primary liver cancer is the third leading cause of cancer death worldwide. Virus infection is the most common and strongest etiological factor for liver cancer development. Pathologically, primary liver cancer can be classified into ∼90% hepatocellular carcinoma (HCC), and 5∼10% intrahepatic cholangiocarcinoma (ICC), and the combined hepatocellular-cholangiocarcinoma (cHCC/CC) representing only a small portion. Clinically, ICC and cHCC/CC show much more aggressive behavior with poorer prognosis than HCC, and no standard treatment currently exists, other than surgical resection. ICC and cHCC/CC show varying degrees of biliary epithelial differentiation, which can be defined as liver cancer displaying a biliary phenotype (LCB). To gain insight into molecular alterations of LCBs, we performed whole genome sequencing analysis on 30 LCBs. Here we show the genome-wide substitution patterns of LCBs developed in chronic hepatitis livers overlapped with those of 60 HCCs, while those of hepatitis-negative LCBs diverged. The subsequent validation study on 68 LCBs identified recurrent mutations in TERT promoter, chromatin regulators (BAP1, PBRM1 and ARID2), a synapse organization gene (PCLO), IDH genes and KRAS. The frequencies of KRAS and IDHs mutations, which are associated with poor disease-free survival, were significantly higher in hepatitis-negative LCBs. This study reveals the strong impact of chronic hepatitis on the mutational landscape in liver cancer and the genetic diversity among LCBs. Citation Format: Hidewaki Nakagawa, Akihiro Fujimoto, Mayuko Furuta, Kunihito Gotoh, Toru Nakamura, Masakazu Yamamoto, Hiroki Yamaue, Kazuaki Chayama, Satoru Miyano, Tatsuhiko Tsunoda. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3890. doi:10.1158/1538-7445.AM2015-3890
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 3 ( 2022-03-01), p. 692-711
    Abstract: The neuroendocrine carcinoma of the gastrointestinal system (GIS-NEC) is a rare but highly malignant neoplasm. We analyzed 115 cases using whole-genome/exome sequencing, transcriptome sequencing, DNA methylation assays, and/or ATAC-seq and found GIS-NECs to be genetically distinct from neuroendocrine tumors (GIS-NET) in the same location. Clear genomic differences were also evident between pancreatic NECs (Panc-NEC) and nonpancreatic GIS-NECs (Nonpanc-NEC). Panc-NECs could be classified into two subgroups (i.e., “ductal-type” and “acinar-type”) based on genomic features. Alterations in TP53 and RB1 proved common in GIS-NECs, and most Nonpanc-NECs with intact RB1 demonstrated mutually exclusive amplification of CCNE1 or MYC. Alterations of the Notch gene family were characteristic of Nonpanc-NECs. Transcription factors for neuroendocrine differentiation, especially the SOX2 gene, appeared overexpressed in most GIS-NECs due to hypermethylation of the promoter region. This first comprehensive study of genomic alterations in GIS-NECs uncovered several key biological processes underlying genesis of this very lethal form of cancer. Significance: GIS-NECs are genetically distinct from GIS-NETs. GIS-NECs arising in different organs show similar histopathologic features and share some genomic features, but considerable differences exist between Panc-NECs and Nonpanc-NECs. In addition, Panc-NECs could be classified into two subgroups (i.e., “ductal-type” and “acinar-type”) based on genomic and epigenomic features. This article is highlighted in the In This Issue feature, p. 587
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...