GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Yagi, Shinya  (1)
  • Yaita, Tsuyoshi  (1)
  • Engineering  (1)
Material
Publisher
Person/Organisation
Language
Years
Subjects(RVK)
  • Engineering  (1)
RVK
  • 1
    In: Surface and Interface Analysis, Wiley, Vol. 51, No. 1 ( 2019-01), p. 85-88
    Abstract: In this study, gold nanoparticles (AuNPs) prepared in a 5 mM CsCl aqueous solution using the solution‐plasma method are characterized via transmission electron microscopy (TEM) and X‐ray photoelectron spectroscopy with synchrotron radiation (SR‐XPS). The particle diameter is measured over the process time via TEM. During the solution‐plasma process, small particles of 2.1 to 2.2‐nm diameter are generated in the CsCl aqueous solution; these particles then enlarge via Ostwald ripening over time until they reach an equilibrium size of ~13 nm after 36 days. In addition, the surface chemical states of the AuNPs are characterized at different depths via SR‐XPS. The SR‐XPS measurements obtained using incident X‐ray energy ( hν ) of 945.0 eV revealed that Cs─Au, Cl─Au, and Cs─Cl─Au bonds are present 1.2 nm below the surface. The measurements obtained at an incident X‐ray energy of 2515.0 eV showed that Cs─Cl─Au bonding is also present 2.5 nm below the surface, indicating that Cs and Cl strongly interact with Au. The TEM and SR‐XPS measurements revealed that 2 processes occur cyclically during the growth process via Ostwald ripening: (i) the Cs and Cl in the aqueous solution adsorb on the AuNP surface and (ii) Au atoms subsequently bond to the AuNPs surface.
    Type of Medium: Online Resource
    ISSN: 0142-2421 , 1096-9918
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2023881-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...