GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • Xing, Yihan  (2)
Material
Publisher
  • Frontiers Media SA  (2)
Person/Organisation
Language
Years
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-11-11)
    Abstract: This investigation maximize the annual energy production (AEP) of a wind farm’s layout at a specific site using a novel multi-stage approach. The downstream wind turbines’ energy production decreases due to the reduced wind speed and turbulence created by the upstream wind turbines’ wakes. The wake interference from wind turbines causes the reduction of overall power efficiency. This paper provides a novel multi-stage strategy for the optimal layouts generated by heuristic algorithms to address this problem. A comparison of the proposed multi-stage approach to previous optimization algorithms is presented to demonstrate its efficiency using three referenced cases and one potential wind farm in the Gulf of Maine. The results demonstrate that applying the proposed multi-stage approach increases AEP and decreases computational time compared to previous research and optimization algorithms, which is crucial for large-scale offshore wind farm layout design and optimization.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-8-3)
    Abstract: Floating offshore wind turbines (FOWT) generate green renewable energy and are a vital part of the modern offshore wind energy industry. Robust predicting extreme offshore loads during FOWT operations is an important safety concern. Excessive structural bending moments may occur during certain sea conditions, posing an operational risk of structural damage. This paper uses the FAST code to analyze offshore wind turbine structural loads due to environmental loads acting on a specific FOWT under actual local environmental conditions. The work proposes a unique Gaidai-Fu-Xing structural reliability approach that is probably best suited for multi-dimensional structural responses that have been simulated or measured over a long period to produce relatively large ergodic time series. In the context of numerical simulation, unlike existing reliability approaches, the novel methodology does not need to re-start simulation again each time the system fails. As shown in this work, an accurate forecast of the probability of system failure can be made using measured structural response. Furthermore, traditional reliability techniques cannot effectively deal with large dimensionality systems and cross-correction across multiple dimensions. The paper aims to establish a state-of-the-art method for extracting essential information concerning extreme responses of the FOWT through simulated time-history data. Three key components of structural loads are analyzed, including the blade-root out-of-plane bending moment, tower fore-aft bending moment, and mooring line tension. The approach suggested in this study allows predicting failure probability efficiently for a non-linear multi-dimensional dynamic system as a whole.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...