GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • MDPI AG  (2)
  • Xie, Changwei  (2)
  • 2020-2024  (2)
Materialart
Verlag/Herausgeber
  • MDPI AG  (2)
Sprache
Erscheinungszeitraum
  • 2020-2024  (2)
Jahr
  • 1
    In: Water, MDPI AG, Vol. 12, No. 5 ( 2020-05-01), p. 1287-
    Kurzfassung: Lakes on the Qinghai–Tibetan Plateau (QTP) have experienced significant changes, especially the prevailing lake expansion since 2000 in the endorheic basin. The influence of permafrost thawing on lake expansion is significant but rarely considered in previous studies. In this study, based on Landsat images and permafrost field data, the spatial-temporal area changes of lakes of more than 5 km2 in the endorheic basin on the QTP during 2000–2017 is examined and the impact of permafrost degradation on lake expansion is discussed. The main results are that permafrost characteristics and its degradation trend have close relationships with lake changes. Lake expansion in the endorheic basin showed a southwest–northeast transition from shrinking to stable to rapidly expanding, which corresponded well with the permafrost distribution from island-discontinuous to seasonally frozen ground to continuous permafrost. A dramatic lake expansion in continuous permafrost showed significant spatial differences; lakes expanded significantly in northern and eastern continuous permafrost with a higher ground ice content but slightly in southern continuous permafrost with a lower ground ice content. This spatial pattern was mainly attributed to the melting of ground ice in shallow permafrost associated with accelerating permafrost degradation. Whereas, some lakes in the southern zones of island-discontinuous permafrost were shrinking, which was mainly because the extended taliks arising from the intensified permafrost degradation have facilitated surface water and suprapermafrost groundwater discharge to subpermafrost groundwater and thereby drained the lakes. Based on observation and simulated data, the melting of ground ice at shallow depths below the permafrost table accounted for 21.2% of the increase in lake volume from 2000 to 2016.
    Materialart: Online-Ressource
    ISSN: 2073-4441
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2521238-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 14, No. 10 ( 2022-05-20), p. 2450-
    Kurzfassung: Permafrost distribution is of great significance for the study of climate, ecology, hydrology, and infrastructure construction in high-cold mountain regions with complex topography. Therefore, updated high-resolution permafrost distribution mapping is necessary and highly demanded in related fields. This case study conducted in a small catchment in the northeast of the Qinghai Tibet Plateau proposes a new method of using ground-penetrating radar (GPR) to detect the stratigraphic structure, interpret the characteristics of frozen ground, and extract the boundaries of permafrost patches in mountain areas. Thus, an empirical–statistical model of mountain frozen ground zonation, along with aspect (ASP) adjustment, is established based on the results of the GPR data interpretation. The spatial mapping of the frozen ground based on this model is compared with a field survey dataset and two existing permafrost distribution maps, and their consistencies are all higher than 80. In addition, the new map provides more details on the distribution of frozen ground. In this case, the influence of ASP on the distribution of permafrost in mountain areas is revealed: the adjustment of ASP on the lower limit of continuous and discontinuous permafrost is 180–200 m, the difference in the annual mean ground temperature between sunny and shady slopes is up to 1.4–1.6 °C, and the altitude-related temperature variation and uneven distribution of solar radiation in different ASPs comprehensively affect the zonation of mountain frozen ground. This work supplements the traditional theory of mountain permafrost zonation, the results of which are of value to relevant scientific studies and instructive to engineering construction in this region.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...