GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Cleaner Production, Elsevier BV, Vol. 234 ( 2019-10), p. 258-274
    Type of Medium: Online Resource
    ISSN: 0959-6526
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1179393-4
    detail.hit.zdb_id: 2029338-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Informa UK Limited ; 2015
    In:  Soil Science and Plant Nutrition Vol. 61, No. 5 ( 2015-09-03), p. 775-787
    In: Soil Science and Plant Nutrition, Informa UK Limited, Vol. 61, No. 5 ( 2015-09-03), p. 775-787
    Type of Medium: Online Resource
    ISSN: 0038-0768 , 1747-0765
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2218706-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Plant Physiology and Biochemistry Vol. 151 ( 2020-06), p. 369-377
    In: Plant Physiology and Biochemistry, Elsevier BV, Vol. 151 ( 2020-06), p. 369-377
    Type of Medium: Online Resource
    ISSN: 0981-9428
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2031431-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Plant Physiology and Biochemistry Vol. 159 ( 2021-02), p. 179-192
    In: Plant Physiology and Biochemistry, Elsevier BV, Vol. 159 ( 2021-02), p. 179-192
    Type of Medium: Online Resource
    ISSN: 0981-9428
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2031431-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 10 ( 2022-05-13), p. 5464-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 10 ( 2022-05-13), p. 5464-
    Abstract: Plants suffer from a variety of environmental stresses during their growth and development. The evolutionarily conserved sucrose nonfermenting kinase 1-related protein kinase 1 (SnRK1) plays a central role in the regulation of energy homeostasis in response to stresses. In plant cells, autophagy is a degradation process occurring during development or under stress, such as nutrient starvation. In recent years, SnRK1 signaling has been reported to be an upstream activator of autophagy. However, these studies all focused on the regulatory effect of SnRK1 on TOR signaling and the autophagy-related gene 1 (ATG1) complex. In this study, overexpression of the gene encoding the Prunus persica SnRK1 α subunit (PpSnRK1α) in tomato improved the photosynthetic rates and enhanced the resistance to low nutrient stress (LNS). Overexpression of PpSnRK1α increased autophagy activity and upregulated the expression of seven autophagy-related genes (ATGs). The transcriptional levels of SlSnRK2 family genes were altered significantly by PpSnRK1α, signifying that PpSnRK1α may be involved in the ABA signaling pathway. Further analysis showed that PpSnRK1α not only activated autophagy by inhibiting target of rapamycin (TOR) signaling but also enhanced ABA-induced autophagy. This indicates that PpSnRK1α regulates the photosynthetic rate and induces autophagy, and then responds to low nutrient stress.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 9 ( 2022-04-28), p. 4914-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 9 ( 2022-04-28), p. 4914-
    Abstract: Sucrose nonfermenting-1-related protein kinase 1 (SnRK1) is a central integrator of plant stress and energy starvation signalling pathways. We found that the FaSnRK1α-overexpression (OE) roots had a higher respiratory rate and tolerance to waterlogging than the FaSnRK1α-RNAi roots, suggesting that FaSnRK1α plays a positive role in the regulation of anaerobic respiration under waterlogging. FaSnRK1α upregulated the activity of anaerobic respiration-related enzymes including hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). FaSnRK1α also enhanced the ability to quench reactive oxygen species (ROS) by increasing antioxidant enzyme activities. We sequenced the transcriptomes of the roots of both wild-type (WT) and FaSnRK1α-RNAi plants, and the differentially expressed genes (DEGs) were clearly enriched in the defence response, response to biotic stimuli, and cellular carbohydrate metabolic process. In addition, 42 genes involved in glycolysis and 30 genes involved in pyruvate metabolism were significantly regulated in FaSnRK1α-RNAi roots. We analysed the transcript levels of two anoxia-related genes and three ERFVIIs, and the results showed that FaADH1, FaPDC1, FaHRE2 and FaRAP2.12 were upregulated in response to FaSnRK1α, indicating that FaSnRK1α may be involved in the ethylene signalling pathway to improve waterlogging tolerance. In conclusion, FaSnRK1α increases the expression of ERFVIIs and further activates anoxia response genes, thereby enhancing anaerobic respiration metabolism in response to low-oxygen conditions during waterlogging.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 19 ( 2022-09-22), p. 11144-
    Abstract: Nitrogen is an important nutrient element that limits plant growth and yield formation, but excessive nitrogen has negative effects on plants and the environment. It is important to reveal the molecular mechanism of high NUE (nitrogen use efficiency) for breeding peach rootstock and variety with high NUE. In this study, two peach rootstocks, Shannong–1 (S) and Maotao (M), with different NUE were used as materials and treated with 0.1 mM KNO3 for transcriptome sequencing together with the control group. From the results of comparison between groups, we found that the two rootstocks had different responses to KNO3, and 2151 (KCL_S vs. KCL_M), 327 (KNO3_S vs. KCL_S), 2200 (KNO3_S vs. KNO3_M) and 146 (KNO3_M vs. KCL_M) differentially expressed genes (DEGs) were identified, respectively, which included multiple transcription factor families. These DEGs were enriched in many biological processes and signal transduction pathways, including nitrogen metabolism and plant hormone signal transduction. The function of PpNRT2.1, which showed up-regulated expression under KNO3 treatment, was verified by heterologous expression in Arabidopsis. The plant height, SPAD (soil and plant analyzer development) of leaf and primary root length of the transgenic plants were increased compared with those of WT, indicating the roles of PpNRT2.1 in nitrogen metabolism. The study uncovered for the first time the different molecular regulatory pathways involved in nitrogen metabolism between two peach rootstocks and provided gene reserve for studying the molecular mechanism of nitrogen metabolism and theoretical basis for screening peach rootstock or variety with high NUE.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2023
    In:  Journal of Agricultural and Food Chemistry Vol. 71, No. 23 ( 2023-06-14), p. 8846-8858
    In: Journal of Agricultural and Food Chemistry, American Chemical Society (ACS), Vol. 71, No. 23 ( 2023-06-14), p. 8846-8858
    Type of Medium: Online Resource
    ISSN: 0021-8561 , 1520-5118
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2023
    detail.hit.zdb_id: 1483109-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 12 ( 2021-3-31)
    Abstract: It is very important to promote root growth and delay root and leaf senescence, to improve nitrogen absorption and utilization efficiency, and to improve the storage nutrition level of the tree, so as to improve the fruit quality and yield of peach. In this experiment, we compared and analyzed the effects of traditional fertilization and bag-controlled release fertilizer (BCRF) on the growth of shoots and roots, senescence of leaves and roots, and fruit yield and quality. Moreover, the impacts of BCRF on ammonia volatilization, nitrogen utilization rate, fine root turnover, and plant storage nutrients were also investigated. Compared with conventional fertilizer use, the application of BCRF significantly promoted the shoot growth of young peach trees. Additionally, BCRF delayed leaf senescence and increased root activity in autumn. This increased the storage nutrients of the peach tree. Compared with traditional fertilizer, ammonia volatilization reduced to 54.36% under BCRF application situation. BCRF also promoted the occurrence of fine roots and decreased the annual turnover rate. A 15 N tracer test showed that, compared with traditional fertilizer, BCRF nitrogen utilization efficiency increased by 37.73% in peach trees under BCRF treatment significantly. The results from 3 consecutive years showed that the application of BCRF increased the yield of individual plants by 21.35% on average compared to the yield from plants receiving equal amounts of fertilizer applied by spreading (FSA). Thus, BCRF can promote the occurrence of fine roots and decrease the root annual turnover rate in peach trees, and it also improves the utilization efficiency of fertilizer, reduces ammonia volatilization, delays leaf senescence, and enhances storage nutrition, fruit yield, and fruit quality in peach trees.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-10-21)
    Abstract: Water shortage is a key factor that can restrict peach tree growth. Plants produce fatty acids and the fatty acid derivatives lauric acid (LA) and 12-hydroxylauric acid (LA-OH), which are involved in abiotic stress responses, but the underlying stress response mechanisms remain unclear. In this study, physiological examination revealed that in Prunus persica (L.) Batsch, pretreatment with 50 ppm LA-OH and LA reduced drought stress, efficiently maintained the leaf relative water content, and controlled the relative conductivity increase. Under drought stress, LA-OH and LA treatments prevented the degradation of photosynthetic pigments, increased the degree of leaf stomatal opening and enhanced the net photosynthetic rate. Compared with drought stress, LA-OH and LA treatment effectively increased the net photosynthetic rate by 204.55% and 115.91%, respectively, while increasing the Fv/Fm by 2.75% and 7.75%, respectively, but NPQ decreased by 7.67% and 37.54%, respectively. In addition, the level of reactive oxygen species increased under drought stress. The content of O 2 - in LA-OH and LA treatment decreased by 12.91% and 11.24% compared to CK-D, respectively, and the content of H 2 O 2 decreased by 13.73% and 19.94%, respectively. At the same time, the content of malondialdehyde (MDA) decreased by 55.56% and 58.48%, respectively. We believe that the main reason is that LA-OH and LA treatment have improved the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). The application of exogenous LA increased the levels of soluble sugars, soluble proteins, proline and free amino acids under drought stress, and maintained the osmotic balance of cells. Compared with CK-D treatment, it increased by 24.11%, 16.89%, 29.3% and 15.04%, respectively. At the same time, the application of exogenous LA-OH also obtained similar results. In conclusion, exogenous LA-OH and LA can alleviate the damage to peach seedlings caused by drought stress by enhancing the photosynthetic and antioxidant capacities, increasing the activities of protective enzymes and regulating the contents of osmotic regulators, but the molecular mechanism is still in need of further exploration.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...