GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (11)
  • Xiang, Wenhua  (11)
  • 1
    In: Ecology and Evolution, Wiley, Vol. 9, No. 9 ( 2019-05), p. 5338-5347
    Abstract: To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state‐owned forest farm, two 1‐ha permanent study plots (100‐m × 100‐m) were established. We selected four diversity indices including species richness, Shannon–Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken‐stick, niche preemption, and Zipf‐Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion ( AIC ) and Kolmogorov–Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad‐leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump‐shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad‐leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Functional Ecology, Wiley, Vol. 33, No. 8 ( 2019-08), p. 1549-1560
    Abstract: Increased availability of soil phosphorus (P) has recently been recognised as an underlying driving factor for the positive relationship between plant diversity and ecosystem function. The effects of plant diversity on the bioavailable forms of P involved in biologically mediated rhizospheric processes and how the link between plant and soil microbial diversity facilitates soil P bioavailability, however, remain poorly understood. This study quantified four forms of bioavailable P (CaCl 2 ‐P, citric‐P, enzyme‐P and HCl‐P) in mature subtropical forests using a novel biologically based approach, which emulates how rhizospheric processes influence the release and supply of available P. Soil microbial diversity was measured by Illumina high‐throughput sequencing. Our results suggest that tree species richness significantly affects soil microbial diversity ( p  〈  0.05), increases litter decomposition, fine‐root biomass and length and soil organic carbon and thus increases the four forms of bioavailable P. A structural equation model that links plants, soil microbes and P forms indicated that soil bacterial and fungal diversity play dominant roles in mediating the effects of tree species richness on soil P bioavailability. An increase in the biodiversity of plants, soil bacteria and fungi could maintain soil P bioavailability and alleviate soil P limitations. Our results imply that biodiversity strengthens plant and soil feedback and increases P recycling. A plain language summary is available for this article.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Ecology, Wiley, Vol. 107, No. 5 ( 2019-09), p. 2266-2277
    Abstract: Forest productivity may be determined not only by biodiversity but also by environmental factors and stand structure attributes. However, the relative importance of these factors in determining productivity is still controversial for subtropical forests. Based on a large dataset from 600 permanent forest inventory plots across subtropical China, we examined the relationship between biodiversity and forest productivity and tested whether stand structural attributes (stand density in terms of trees per ha, age and tree size) and environmental factors (climate and site conditions) had larger effects on productivity. Furthermore, we quantified the relative importance of environmental factors, stand structure and diversity in determining forest productivity. Diversity, together with stand structure and site conditions, regulated the variability in forest productivity. The relationship between diversity and forest productivity did not vary along environmental gradients. Stand density and age were more important modulators of forest productivity than diversity. Synthesis . Diversity had significant and positive effects on productivity in species‐rich subtropical forests, but the effects of stand density and age were also important. Our work highlights that while biodiversity conservation is often important, the regulation of stand structure can be even more important to maintain high productivity in subtropical forests.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Oikos, Wiley, Vol. 130, No. 1 ( 2021-01), p. 1-14
    Abstract: The importance of species richness to ecosystem functioning and services is a central tenet of biological conservation. However, most of our theory and mechanistic understanding is based on diversity found aboveground. Our study sought to better understand the relationship between diversity and belowground function by studying root biomass across a plant diversity gradient. We collected soil cores from 91 plots with between 1 and 12 aboveground tree species in three natural secondary forests to measure fine root (≤ 2 mm in diameter) biomass. Molecular methods were used to identify the tree species of fine roots and to estimate fine root biomass for each species. This study tested whether the spatial root partitioning (species differ by belowground territory) and symmetric growth (the capacity to colonize nutrient‐rich hotspots) underpin the relationship between aboveground species richness and fine root biomass. All species preferred to grow in nutrient‐rich areas and symmetric growth could explain the positive relationship between aboveground species richness and fine root biomass. However, symmetric growth only appeared in the nutrient‐rich upper soil layer (0–10 cm). Structural equation modelling indicated that aboveground species richness and stand density significantly affected fine root biomass. Specifically, fine root biomass depended on the interaction between aboveground species richness and stand density, with fine root biomass increasing with species richness at lower stand density, but not at higher stand density. Overall, evidence for spatial (i.e. vertical) root partitioning was inconsistent; assumingly any roots growing into deeper unexplored soil layers were not sufficient contributors to the positive diversity–function relationship. Alternatively, density‐dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the spatial root partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecology and Evolution, Wiley, Vol. 7, No. 14 ( 2017-07), p. 5366-5377
    Abstract: Wood density ( WD ) is not only an important parameter to estimate aboveground biomass but also an indicator of timber quality and plant adaptation strategies to stressful conditions (i.e., windthrow, pests, and pathogens). This study had three objectives: (1) to compare WD among seven subtropical tree species; (2) to determine how tree growth traits may influence possible differences in WD between the pioneer and shade‐tolerant species; and (3) to examine whether or not WD differs by tree social status (dominant vs. suppressed trees) within species. To do this, 70 trees were destructively harvested. From each tree, disks at different stem heights were obtained and subjected to a method of stem analysis to measure whole tree level WD . The results showed that WD differed significantly among the seven species ( p  〈  .001). Their average WD was 0.537 g/cm 3 , ranging from 0.409 g/cm 3 for Choerospondias axillaris to 0.691 g/cm 3 for Cyclobalanopsis glauca . The average WD of the four pioneer species (0.497 ± 0.13 g/cm 3 ) was significantly lower ( p  〈  .01) than that of the three shade‐tolerant species (0.589 ± 0.12 g/cm 3 ). The WD of the pioneers had a significant positive correlation with their stem diameter at breast height ( DBH ), tree height ( H ), and tree age, but WD had a significant negative correlation with relative growth rate ( RGR ). In contrast, the WD of the shade‐tolerant tree species had no significant relationships with DBH , H , tree age, or RGR . The dominant trees of the pioneer species had a higher WD than the suppressed trees, whereas the shade‐tolerant species had a lower WD for dominant trees than the suppressed trees. However, the differences in WD between dominant and suppressed trees were not significant. Taken together, the results suggest that classifying species into pioneer and shade‐tolerant groups to examine the effects of tree growth traits and social status could improve our understanding of intra‐ and interspecific variation in WD among subtropical tree species.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 2 ( 2021-02), p. 500-513
    Abstract: Tree species diversity can increase the stability of ecosystem productivity by increasing mean productivity and/or reducing the standard deviation in productivity. However, stand structure, environmental and socio‐economic conditions influence plant diversity and might strongly influence the relationships between diversity and stability in natural forest communities. The relative importance of these factors for community stability remains poorly understood in complex (species‐rich) subtropical forests. Location Subtropical area of southern China. Time period 1999–2014. Major taxa studied Forest trees. Methods We conducted bivariate analyses to examine the mechanisms (overyielding and species asynchrony) underlying the effects of diversity on stability. Multiple regression models were then used to determine the relative importance of tree species diversity, stand structure, socio‐economic factors and environmental conditions on stability. Structural equation modelling was used to disentangle how these variables directly and/or indirectly affect forest stability. Results Tree species richness exerted a positive effect on stability through overyielding and species asynchrony, and this effect was stronger in mountainous forests than in hilly forests. Species richness positively affected the mean productivity, whereas species asynchrony negatively affected the variability in productivity, hence increasing forest stability. Structural diversity also had a positive effect, whereas population density had a negative effect on stability. Precipitation variability and slope mainly had indirect influences on stability through their effects on tree species richness. Main conclusions Overall, tree species diversity governed stability; however, stand structure, socio‐economic conditions and environmental conditions also played an important role in shaping stability in these forests. Our work highlights the importance of regulating stand structure and socio‐economic factors in forest management and biodiversity conservation, to maintain and enhance their stability to provide ecosystem services in the face of unprecedented anthropogenic activities and global climate change.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecology and Evolution, Wiley, Vol. 12, No. 9 ( 2022-09)
    Abstract: Neutral‐theory‐based stochastic and niche‐theory‐based determinative processes are commonly used to explain the mechanisms of natural community assembly. However, considerable uncertainty remains regarding the relative importance of different ecological processes in shaping forest communities. Functional traits and phylogeny provide important information about plant environmental adaptation strategies and evolutionary history and promise a better mechanistic and predictive understanding of community assembly. Based on nine leaf functional traits and phylogenetic data of 18 dominant species in a Lithocarpus glaber – Cyclobalanopsis glauca evergreen broad‐leaved forest, we analyzed the variation in traits, explored the influence of phylogeny and environment on leaf traits, and distinguished the relative effects of spatial and environmental variables on functional traits and phylogenetic compositions. The results showed the following: (i) Leaf traits had moderate intraspecific variation, and significant interspecific variation existed especially among life forms. (ii) Significant phylogenetic signals were detected only in leaf thickness and leaf area. The correlations among traits both supported “the leaf economics spectrum” at the species and community levels, and the relationships significantly increased or only a little change after removing the phylogenetic influence, which showed a lack of consistency between the leaf functional trait patterns and phylogenetic patterns. We infer the coexistent species tended to adopt “realism” to adapt to their habitats. (iii) Soil total potassium and phosphorus content, altitude, aspect, and convexity were the most critical environmental factors affecting functional traits and phylogenetic composition. Total environmental and spatial variables explained 63.38% of the variation in functional trait composition and 47.96% of the variation in phylogenetic structures. Meanwhile, the contribution of pure spatial factors was significantly higher than that of the pure environment. Stochastic processes played dominant roles in driving community functional trait assembly, but determinative processes such as environmental filtering had a stronger effect on shaping community phylogenetic structure at a fine scale.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Land Degradation & Development, Wiley, Vol. 32, No. 3 ( 2021-02-15), p. 1164-1178
    Abstract: Predicting changes in carbon and nutrient cycles in plantations requires a mechanistic understanding of the effects of stand age on soil quality and microbial communities. Here, we evaluated soil quality by using an integrated soil quality index (SQI) and traced the parallel shifts in fungal community composition using high‐throughput sequencing in a chronosequence of Chinese fir ( Cunninghamia lanceolata ) plantations (stand age of 3, 16, 25, 32, 〉 80 years). Soil properties showed pronounced changes with stand age in the topsoil. Soil organic carbon (SOC), total nitrogen (TN) and available phosphorus (AP) were 2.1, 1.9 and 2.2 times higher, respectively, in the oldest stands than in the youngest stands. SQI of the top 5 cm increased logarithmically with stand age. Mycorrhizal fungi initially increased in younger stands, but then they were gradually replaced by saprotrophs in older stands due to larger litterfall. Strong positive correlations between saprotrophic fungi and key soil quality indicators, such as TN, AP and NH 4 + , confirmed that abundance of decomposers is tightly linked with higher soil quality. Mycorrhizal orders Thelephorales , Sebacinales and Russulales increased in abundance and raised the activity of acid phosphatase to mobilise limiting phosphorus from organic matter. Consequently, mycorrhizal fungi are especially relevant in younger stands to acquire nutrients to sustain tree productivity. In developed stands, however, saprotrophic fungi are crucial in recycling nutrients from the litter. Collectively, the increase of topsoil quality during the life cycle of Chinese fir plantations is closely linked with the observed transition of fungal communities from mycorrhizae to saprotrophs.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: JAWRA Journal of the American Water Resources Association, Wiley, Vol. 56, No. 6 ( 2020-12), p. 1045-1058
    Abstract: The atmospheric wet deposition was higher in subtropical China because of rapid economic growth in past decades and high humidity weather. One‐year measurement of wet deposition of organic carbon (C) and dissolved nitrogen (N) was carried out at three sites (Changsha city, Huitong agriculture county, and Dashanchong nature reserve) in Hunan Province. Taking the nature reserve as the control, we make a comparative analysis of the characteristics in atmospheric wet deposition between city and countryside. The concentrations and wet depositions of total and each component of C and N were the lowest in the nature reserve, indicating that human activities significantly increase the atmospheric wet deposition. The concentrations and the wet deposition fluxes of particulate organic C, ‐N, and dissolved organic N (DON) were the highest in the city, whereas the corresponding values of dissolved organic C (DOC) and ‐N were the highest in the countryside. Except for DON, the concentrations of DOC, ‐N, and ‐N changed significantly with rainfall characteristics (rainfall amount, intensity, and weather conditions). Our study supplements the wet deposition data as a baseline for exploring future changes in subtropical China. Meanwhile, the lowest wet depositions in nature reserve imply that the reduction of anthropogenic emission is essential to minimizing the adverse effects of the increased atmospheric deposition.
    Type of Medium: Online Resource
    ISSN: 1093-474X , 1752-1688
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2090051-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Hydrological Processes, Wiley, Vol. 36, No. 3 ( 2022-03)
    Abstract: Canopy interception loss is an important hydrological process that affects rainfall redistribution, nutrient cycling, and soil and water conservation in forest ecosystems. However, the manner in which interception loss is affected in forests that are in restoration stages dominated by different tree species has not been fully understood. In this study, interception loss, throughfall, and stemflow were measured consecutively for 2 years (May 2017 through April 2019) in three secondary forests in subtropical China: a coniferous and broadleaved mixed forest ( Pinus massoniana , Lithocarpus glaber , PM) in early restoration stage, a deciduous broadleaved forest ( Choerospondias axillaris , CA) in middle restoration stage, and an evergreen broadleaved forest ( L. glaber – Cyclobalanopsis glauca , LG) in late restoration stage. For a given amount of rainfall, the relative interception loss in the CA was significantly lower than that in the evergreen forests in summer, spring, or winter. The amount of interception loss during light rain, moderate rain, or heavy storms was also significantly lower in CA as compared to that in evergreen forests, owing to the lesser leaf area and phenology of deciduous tree species as well as a higher leaf area index (LAI) and stand density in PM and LG. Meanwhile, the highest relative interception loss, interception loss amount, canopy storage capacity, canopy cover fraction, and mean evaporation rate was observed in the climax forest (LG), which has a higher LAI and stand density. Further, the revised Gash's analytical model (RGAM) and the sparse Rutter models were successfully applied to simulate interception loss in these forests, with the RGAM performing better as compared to the sparse Rutter model. The results of the field measurements and model simulations depict that the climax community at the late restoration stage can effectively reduce the amount of rainwater reaching the soil surface, thus weakening the effect of flood peaks.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...