GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Xiang, Jie  (2)
  • 2005-2009  (2)
  • Natural Sciences  (2)
Material
Person/Organisation
Language
Years
  • 2005-2009  (2)
Year
Subjects(RVK)
RVK
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2006
    In:  Nature Vol. 441, No. 7092 ( 2006-5), p. 489-493
    In: Nature, Springer Science and Business Media LLC, Vol. 441, No. 7092 ( 2006-5), p. 489-493
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 29 ( 2005-07-19), p. 10046-10051
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 29 ( 2005-07-19), p. 10046-10051
    Abstract: Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a “0.7 structure,” which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...