GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Scientific Societies ; 2022
    In:  Molecular Plant-Microbe Interactions® Vol. 35, No. 8 ( 2022-08), p. 681-693
    In: Molecular Plant-Microbe Interactions®, Scientific Societies, Vol. 35, No. 8 ( 2022-08), p. 681-693
    Abstract: Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl carrier proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pv. tomato. Mutant acp1 plants have reduced levels of linolenic acid (18:3), which is the primary precursor for biosynthesis of the phytohormone jasmonic acid (JA), and a corresponding decrease in the abundance of JA. Consistent with the known antagonistic relationship between JA and salicylic acid (SA), acp1 mutant plants also accumulate a higher level of SA and display corresponding shifts in JA- and SA-regulated transcriptional outputs. Moreover, methyl JA and linolenic acid treatments cause an apparently enhanced decrease of resistance against P. syringae pv. tomato in acp1 mutants than that in WT plants. The ability of ACP1 to prevent this hormone imbalance likely underlies its negative impact on PTI in plant defense. Thus, ACP1 links FA metabolism to stress hormone homeostasis to be negatively involved in PTI in Arabidopsis plant defense. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
    Type of Medium: Online Resource
    ISSN: 0894-0282 , 1943-7706
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2022
    detail.hit.zdb_id: 2037108-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Scientific Societies ; 2023
    In:  Plant Disease Vol. 107, No. 2 ( 2023-02-01), p. 582-
    In: Plant Disease, Scientific Societies, Vol. 107, No. 2 ( 2023-02-01), p. 582-
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2023
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 15 ( 2020-08-03), p. 5547-
    Abstract: The cuticle is the outermost layer of plant aerial tissue that interacts with the environment and protects plants against water loss and various biotic and abiotic stresses. ADP ribosylation factor guanine nucleotide exchange factor proteins (ARF-GEFs) are key components of the vesicle trafficking system. Our study discovers that AtMIN7, an Arabidopsis ARF-GEF, is critical for cuticle formation and related leaf surface defense against the bacterial pathogen Pseudomonas syringae pathovar tomato (Pto). Our transmission electron microscopy and scanning electron microscopy studies indicate that the atmin7 mutant leaves have a thinner cuticular layer, defective stomata structure, and impaired cuticle ledge of stomata compared to the leaves of wild type plants. GC–MS analysis further revealed that the amount of cutin monomers was significantly reduced in atmin7 mutant plants. Furthermore, the exogenous application of either of three plant hormones—salicylic acid, jasmonic acid, or abscisic acid—enhanced the cuticle formation in atmin7 mutant leaves and the related defense responses to the bacterial Pto infection. Thus, transport of cutin-related components by AtMIN7 may contribute to its impact on cuticle formation and related defense function.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 7 ( 2022-03-31), p. 3857-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 7 ( 2022-03-31), p. 3857-
    Abstract: Plants evolve a prompt and robust immune system to defend themselves against pathogen infections. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first battle layer activated upon the PAMP’s perception, which leads to multiple defense responses. The plasma membrane (PM) H+-ATPases are the primary ion pumps to create and maintain the cellular membrane potential that is critical for various essential biological processes, including plant growth, development, and defense. This study discovered that the PM H+-ATPase AHA5 is negatively involved in Arabidopsis PTI against the virulent pathogen Pseudomonas syringae pvr. tomato (Pto) DC3000 infection. The aha5 mutant plants caused the reduced stomata opening upon the Pto infection, which was associated with the salicylic acid (SA) pathway. In addition, the aha5 mutant plants caused the increased levels of callose deposition, defense-related gene expression, and SA accumulation. Our results also indicate that the PM H+-ATPase activity of AHA5 probably mediates the coupling of H2O2 generation and the apoplast alkalization in PTI responses. Moreover, AHA5 was found to interact with a vital defense regulator, RPM1-interacting protein 4 (RIN4), in vitro and in vivo, which might also be critical for its function in PTI. In summary, our studies show that AHA5 functions as a novel and critical component that is negatively involved in PTI by coordinating different defense responses during the Arabidopsis–Pto DC3000 interaction.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Scientific Societies ; 2022
    In:  Phytobiomes Journal Vol. 6, No. 4 ( 2022-12), p. 354-357
    In: Phytobiomes Journal, Scientific Societies, Vol. 6, No. 4 ( 2022-12), p. 354-357
    Type of Medium: Online Resource
    ISSN: 2471-2906
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2022
    detail.hit.zdb_id: 2897163-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-1-23)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-1-23)
    Abstract: Pseudomonas syringae and Botrytis cinerea cause destructive bacterial speck and grey mold diseases in many plant species, leading to substantial economic losses in agricultural production. Our study discovered that the application of Bacillus proteolyticus strain OSUB18 as a root-drench enhanced the resistance of Arabidopsis plants against P. syringae and B. cinerea through activating Induced Systemic Resistance (ISR). The underlying mechanisms by which OSUB18 activates ISR were studied. Our results revealed that the Arabidopsis plants with OSUB18 root-drench showed the enhanced callose deposition and ROS production when inoculated with Pseudomonas syringae and Botrytis cinerea pathogens, respectively. Also, the increased salicylic acid (SA) levels were detected in the OSUB18 root-drenched plants compared with the water root-drenched plants after the P. syringae infection. In contrast, the OSUB18 root-drenched plants produced significantly higher levels of jasmonyl isoleucine (JA-Ile) than the water root-drenched control after the B. cinerea infection. The qRT-PCR analyses indicated that the ISR-responsive gene MYC2 and the ROS-responsive gene RBOHD were significantly upregulated in OSUB18 root-drenched plants upon both pathogen infections compared with the controls. Also, twenty-four hours after the bacterial or fungal inoculation, the OSUB18 root-drenched plants showed the upregulated expression levels of SA-related genes ( PR1, PR2, PR5, EDS5 , and SID2 ) or JA-related genes ( PDF1.2, LOX3, JAR1 and COI1 ), respectively, which were consistent with the related hormone levels upon these two different pathogen infections. Moreover, OSUB18 can trigger ISR in jar1 or sid2 mutants but not in myc2 or npr1 mutants, depending on the pathogen’s lifestyles. In addition, OSUB18 prompted the production of acetoin, which was reported as a novel rhizobacterial ISR elicitor. In summary, our studies discover that OSUB18 is a novel ISR inducer that primes plants’ resistance against bacterial and fungal pathogens by enhancing the callose deposition and ROS accumulation, increasing the production of specific phytohormones and other metabolites involved in plant defense, and elevating the expression levels of multiple defense genes.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Microbiology Resource Announcements, American Society for Microbiology, Vol. 8, No. 45 ( 2019-11-07)
    Abstract: We report here the genome assembly and analysis of Microbacterium strain sp. LKL04, a Gram-positive bacterial endophyte isolated from switchgrass plants ( Panicum virgatum ) grown on a reclaimed coal-mining site. The 2.9-Mbp genome of this bacterium was assembled into a single contig encoding 2,806 protein coding genes.
    Type of Medium: Online Resource
    ISSN: 2576-098X
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2968655-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Scientific Societies ; 2021
    In:  Molecular Plant-Microbe Interactions® Vol. 34, No. 11 ( 2021-11), p. 1320-1323
    In: Molecular Plant-Microbe Interactions®, Scientific Societies, Vol. 34, No. 11 ( 2021-11), p. 1320-1323
    Abstract: We report here the genome sequence of Bacillus sp. RRD69, a plant-growth-promoting bacterial endophyte isolated from switchgrass plants grown on a reclaimed coal-mining site in Kentucky. RRD69 is predicted to contain 3,758 protein-coding genes, with a genome size of 3.715 Mbp and a 41.41% GC content. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
    Type of Medium: Online Resource
    ISSN: 0894-0282 , 1943-7706
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 2037108-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  Crop Protection Vol. 172 ( 2023-10), p. 106324-
    In: Crop Protection, Elsevier BV, Vol. 172 ( 2023-10), p. 106324-
    Type of Medium: Online Resource
    ISSN: 0261-2194
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2020750-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Plants Vol. 12, No. 9 ( 2023-04-25), p. 1765-
    In: Plants, MDPI AG, Vol. 12, No. 9 ( 2023-04-25), p. 1765-
    Abstract: Plant diseases caused by the pathogen Pseudomonas syringae are serious problems for various plant species worldwide. Accurate detection and diagnosis of P. syringae infections are critical for the effective management of these plant diseases. In this review, we summarize the current methods for the detection and diagnosis of P. syringae, including traditional techniques such as culture isolation and microscopy, and relatively newer techniques such as PCR and ELISA. It should be noted that each method has its advantages and disadvantages, and the choice of each method depends on the specific requirements, resources of each laboratory, and field settings. We also discuss the future trends in this field, such as the need for more sensitive and specific methods to detect the pathogens at low concentrations and the methods that can be used to diagnose P. syringae infections that are co-existing with other pathogens. Modern technologies such as genomics and proteomics could lead to the development of new methods of highly accurate detection and diagnosis based on the analysis of genetic and protein markers of the pathogens. Furthermore, using machine learning algorithms to analyze large data sets could yield new insights into the biology of P. syringae and novel diagnostic strategies. This review could enhance our understanding of P. syringae and help foster the development of more effective management techniques of the diseases caused by related pathogens.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...