GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antibiotics, MDPI AG, Vol. 11, No. 10 ( 2022-09-21), p. 1286-
    Abstract: To analyse the epidemiology and population structure of third-generation cephalosporin-resistant (3GCR) and carbapenem-resistant (CR) Klebsiella pneumoniae complex isolates, patients were screened for rectal colonisation with 3GCR/CR K. pneumoniae complex on admission to six German university hospitals (2016–2019). Also collected were 3GCR/CR and susceptible K. pneumoniae isolates from patients with bloodstream infections (2016–2018). Whole-genome sequencing was performed followed by multilocus sequencing typing (MLST), core-genome MLST, and resistome and virulome analysis. The admission prevalence of 3GCR K. pneumoniae complex isolates during the 4-year study period was 0.8%, and 1.0 bloodstream infection per 1000 patient admissions was caused by K. pneumoniae complex (3GCR prevalence, 15.1%). A total of seven K. pneumoniae complex bloodstream isolates were CR (0.8%). The majority of colonising and bloodstream 3GCR isolates were identified as K. pneumoniae, 96.7% and 98.8%, respectively; the remainder were K. variicola and K. quasipneumoniae. cgMLST showed a polyclonal population of colonising and bloodstream isolates, which was also reflected by MLST and virulome analysis. CTX-M-15 was the most prevalent extended-spectrum beta-lactamase, and 29.7% of the colonising and 48.8% of the bloodstream isolates were high-risk clones. The present study provides an insight into the polyclonal 3GCR K. pneumoniae population in German hospitals.
    Type of Medium: Online Resource
    ISSN: 2079-6382
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2681345-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Antimicrobial Chemotherapy, Oxford University Press (OUP), Vol. 76, No. 7 ( 2021-06-18), p. 1724-1730
    Abstract: To determine the most common tigecycline resistance mechanisms in carbapenem-resistant Acinetobacter baumannii isolates obtained during the global Tigecycline Evaluation Surveillance Trial (TEST). Methods Tigecycline MICs were determined by broth microdilution. WGS was used to screen for the previously identified tigecycline resistance mechanisms, as well as mutations in resistance-nodulation-cell division (RND)-type efflux pump regulators. Results From a total 313 isolates, 113 genetically unique tigecycline-resistant isolates were analysed. The most frequent and worldwide distributed mechanism associated with tigecycline resistance was disruption of adeN, which encodes the repressor of the RND efflux pump AdeIJK, either by IS elements or nucleotide deletions causing premature stop codons. However, mutations leading to amino acid substitutions and disruption by IS elements within the two-component regulatory system adeRS, which regulates expression of the AdeABC efflux pump, correlate with higher tigecycline MICs, but these were found less frequently and were mainly restricted to Southern European countries. Furthermore, an altered version of tviB was identified in several tigecycline-resistant isolates that did not have putative resistance mutations within RND-type regulators. The resistance determinants tet(A) and tet(X), as well as resistance mutations in putative resistance determinants trm, plsC, rrf, msbA and genes encoding 30S ribosomal proteins, were not identified in any isolate. Conclusions The most prevalent tigecycline resistance mechanisms were caused by alterations in the regulators of RND-type efflux pumps. These data provide the basis for further characterization of regulator alterations and their contribution to increased efflux and tigecycline resistance, and also should be taken into account in drug discovery programmes to overcome the contribution of efflux pumps.
    Type of Medium: Online Resource
    ISSN: 0305-7453 , 1460-2091
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1467478-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Antimicrobial Chemotherapy, Oxford University Press (OUP), Vol. 76, No. 4 ( 2021-03-12), p. 883-886
    Abstract: To characterize two Enterococcus faecium isolates with different resistance phenotypes obtained from the same blood culture. Methods The isolates were identified by MALDI-TOF MS and antimicrobial susceptibility testing (AST) was performed using a VITEK® 2 AST P592 card and Etest. WGS was performed on the MiSeq and MinION sequencer platforms. Core-genome MLST (cgMLST) and seven-loci MLST were performed. Plasmid analysis was performed using S1-PFGE followed by Southern-blot hybridization. Results Both E. faecium isolates were ST203. AST revealed that one was a vancomycin-resistant E. faecium (VREfm) isolate and the other was a vancomycin-susceptible E. faecium (VSEfm) isolate. The VREfm isolate harboured the vanA gene cluster as part of a Tn1546-type transposon encoded on a 49 kb multireplicon (rep1, rep2 and rep7a) plasmid (pAML0157.1). On the same plasmid, ant(6)-Ia, cat-like and erm(B) were encoded. The VSEfm isolate harboured a rep2 plasmid (pAML0158.1), 12 kb in size, which was present in full length as part of pAML0157.1 from the VREfm isolate. The vanA-encoding pAML0157.1 was a chimera of the rep2 pAML0158.1 and a second DNA segment harbouring vanA, ant(6)-Ia, erm(B) and cat-like, as well as the replicons rep1 and rep7a. By cgMLST analysis, the VREfm and VSEfm isolates were identical. Conclusions Our results demonstrate that the VREfm and VSEfm blood culture isolates represented ST203 and were identical. The investigated heterogeneous resistance phenotypes resulted from the acquisition or loss of plasmid segments in the enterococcal isolates. These data illustrate that mobile genetic elements may contribute to the spread of vancomycin resistance among enterococci and to the genotypic and phenotypic variation within clonal isolates.
    Type of Medium: Online Resource
    ISSN: 0305-7453 , 1460-2091
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1467478-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...