GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stem Cell Research, Elsevier BV, Vol. 4, No. 2 ( 2010-03), p. 129-139
    Type of Medium: Online Resource
    ISSN: 1873-5061
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 2393143-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 1406-1406
    Abstract: Self renewal and differentiation of hematopoietic progenitor cells (HPC) are regulated by the microenvironment of the bone marrow. As an in vitro model system, mesenchymal stromal cells (MSC) provide a supportive cellular microenvironment for maintaining primitive function of HPC. It has been postulated that direct cell-cell interaction is crucial for maintenance of “stemness”. Human HPC were co-cultured with MSC from human bone marrow and subsequently separated into an adherent and a non-adherent fraction. HPC subsets with higher self-renewing capacity demonstrated significantly higher adhesion to MSC (CD34+vs. CD34−, CD34+/CD38−vs. CD34+/CD38+, slow dividing fraction vs. fast dividing fraction). Long-term culture-initiating cell (LTC-IC) frequency was higher in the adherent fraction than in the non-adherent fraction of CD34+ cells. Microarray analysis (Affymetrix, U133_Plus_2.0) revealed that differentially expressed genes coding for adhesion proteins were highly up-regulated in the adherent fraction of CD34+ cells. These genes included VCAM1, connexin 43 and cadherin-11. Furthermore, we have compared the supportive potential of different feeder layer preparations. Human MSC were isolated from bone marrow (BM), from adipose tissue (AT) and umbilical cord blood (CB). The ability to maintain LTC-IC and a primitive CD34+CD38− immunophenotype was significantly higher for MSC derived from BM and CB compared to those from AT. These results were in line with higher adhesion of HPC to BM-MSC and CB-MSC in comparison to AT-MSC. Analysis of the cytokine production of MSC preparations by antibody arrays, ELISA and by a cytometric bead array showed that albeit there were significant differences in the chemokine secretion profiles of the aforementioned MSC preparations, there was no relationship to their potentials in maintaining primitive function of HPC. Global gene expression profiles of MSC preparations showed that adhesion proteins including N-cadherin, cadherin-11, VCAM1, NCAM1 and integrins were highly expressed in MSC preparations derived from BM and CB. Western blot analysis confirmed higher protein expression of N-cadherin and cadherin-11 in BM-MSC compared to AT-MSC and CB-MSC. Fluorescent microscopic analysis revealed that N-cadherin is located at the cell-cell contacts between HPC and MSC. Expression of N-cadherin or cadherin-11 was efficiently knocked down in MSC feeder layer using siRNA. This effect was verified by Western blot analysis and it lasted for up to seven days. Adhesion of HPC was significantly reduced on MSC that have been treated by siRNAs for N-cadherin and cadherin-11 whereas siRNA for MAPK did not affect cell-cell interaction. Similarly, a blocking functional antibody for N-cadherin reduced significantly the adhesion of HPC to MSC. MSC provide a microenvironment which supports the maintenance of primitive function of HPC. Our results indicated that direct cell-cell interaction mediated by N-cadherin and cadherin-11 plays a central role in this interaction of HPC with their cellular microenvironment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    S. Karger AG ; 2022
    In:  Transfusion Medicine and Hemotherapy Vol. 49, No. 4 ( 2022), p. 258-267
    In: Transfusion Medicine and Hemotherapy, S. Karger AG, Vol. 49, No. 4 ( 2022), p. 258-267
    Abstract: 〈 b 〉 〈 i 〉 Background: 〈 /i 〉 〈 /b 〉 The stem cell niche in human bone marrow provides scaffolds, cellular frameworks and essential soluble cues to support the stemness of hematopoietic stem and progenitor cells (HSPCs). To decipher this complex structure and the corresponding cellular interactions, a number of in vitro model systems have been developed. The cellular microenvironment is of key importance, and mesenchymal stromal cells (MSCs) represent one of the major cellular determinants of the niche. Regulation of the self-renewal and differentiation of HSPCs requires not only direct cellular contact and adhesion molecules, but also various cytokines and chemokines. The C-X-C chemokine receptor type 4/stromal cell-derived factor 1 axis plays a pivotal role in stem cell mobilization and homing. As we have learned in recent years, to realistically simulate the physiological in vivo situation, advanced model systems should be based on niche cells arranged in a three-dimensional (3D) structure. By providing a dynamic rather than static setup, microbioreactor systems offer a number of advantages. In addition, the role of low oxygen tension in the niche microenvironment and its impact on hematopoietic stem cells need to be taken into account and are discussed in this review. 〈 b 〉 〈 i 〉 Summary: 〈 /i 〉 〈 /b 〉 This review focuses on the role of MSCs as a part of the bone marrow niche, the interplay between MSCs and HSPCs and the most important regulatory factors that need to be considered when engineering artificial hematopoietic stem cell niche systems. 〈 b 〉 〈 i 〉 Conclusion: 〈 /i 〉 〈 /b 〉 Advanced 3D model systems using MSCs as niche cells and applying microbioreactor-based technology are capable of simulating the natural properties of the bone marrow niche more closely than ever before.
    Type of Medium: Online Resource
    ISSN: 1660-3796 , 1660-3818
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2022
    detail.hit.zdb_id: 2100533-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 1399-1399
    Abstract: Objective: The significant role of direct contact between hematopoietic progenitor cells (HPC) and the cellular microenvironment for maintaining “stemness” has been demonstrated. Human mesenchymal stromal cell (MSC) feeder layers represent a surrogate model for this interaction. The molecular composition of this heterotypic cell-cell contact is yet unknown. Methods: To define this cell-cell contact between HPC and MSC, we have studied adhesion of various fractions of HPC with different preparations of MSC by using a novel assay based on gravitational force upon inversion. Adherent and non-adherent cells were then separated. Gene expression analysis by microarray (GeneChip Human Genome U133_Plus_2.0, Affymetrix) of the two populations was performed and the relationship to long-term hematopoietic culture initiating cell (LTC-IC) frequency examined. Results: HPC subsets with higher self-renewing capacity demonstrated significantly higher adherence to MSC from human bone marrow (CD34+vs. CD34−, CD34+/CD38−vs. CD34+/CD38+, slow dividing fraction vs. fast dividing fraction). LTC-IC frequency was significantly higher in the adherent fraction than in the non-adherent CD34+ cells, thus providing evidence for specific adhesive interaction of primitive HPC with MSC. Genes coding for adhesion proteins and extracellular matrix were highly expressed in the adherent fraction compared to non-adherent CD34+ cells. These genes included fibronectin1 (FN1), cadherin11, VCAM1, connexin43 and ITGBL1. Furthermore, affinity of CD34+ cells was analyzed on human MSC isolated from bone marrow (BM), adipose tissue (AT) and cord blood (CB). Affinity to BM-MSC was significantly higher compared to AT-MSC and CB-MSC. Gene expression in different MSC preparations (BM-MSC, AT-MSC and CB-MSC) correlated in various adhesion proteins with the differences observed in affinity of HPC (including cadherin11, VCAM1, N-cadherin, ITGB1, ITGA1, ITGA5, SDF-1 and osteopontin). Western blot analysis also confirmed higher protein expression of FN1, cadherin11, N-cadherin and ITGB1 in BM-MSC compared to AT-MSC and CB-MSC. Conclusion: MSC represent a model for the human hematopoietic niche. Primitive subsets of HPC have significantly higher affinity to BM-MSC. The essential role of specific junction proteins (cadherin11, VCAM1, N-cadherin) for stabilization of cell-cell contact is indicated by their significant higher expression on both sides of the heterotypic interaction.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3408-3408
    Abstract: Abstract 3408 The CXCR4-SDF1α axis plays an important role in maintaining the stemness of human hematopoietic stem cells (HSC). In the present study we established a surrogate model for the bone marrow niche by culturing HSC on a feeder-layer of human mesenchymal stromal cells (MSC) and investigated the proliferation and differentiation behaviour upon perturbation by Plerixafor. HSC (CD34+ cells) were isolated from umbilical cord blood by fluorescent activated cell sorting (FACS). MSC were derived from bone marrow aspirates from healthy voluntary donors. HSC were stained with carboxyfluorescein succinimidyl ester (CFSE) and cultured on MSC feeder-layer for 6 days. For evaluating the influence of the culture medium on MSC cultures, three different media conditions (M1-M3) were used. Medium 1 (M1) contained 2% fetal calf serum (FCS), medium 2 (M2) contained 10% FCS and medium 3 (M3) contained GMP-grade human platelet lysate (hPL). Proliferation of HSC was calculated by analyzing the distribution of the CFSE dye (measured at day 1 and day 6). Plerixafor was added in concentrations of 0.1, 1.0 and 10.0 μM. On day 6, HSCs were harvested and analyzed by flow cytometry for CD34, CD38 and CXCR4 expressions in relationship to the cell division rate. When co-cultured with MSC, the division kinetics of HSC was increased, while the proportion of CD34+ cells remained significantly higher compared to HSC without MSC. Accordingly, more CD38− HSC were found after 6 days upon co-culture with MSC. All three MSC preparations supported self-renewing proliferation of HSC, whereas MSC M1 induced the strongest effect. This underlines that co-culture with MSC has a significant supportive function for hematopoiesis. The additional exposure to Plerixafor in the co-culture system partially reversed this effect in a dose-dependent manner: division rate of HSC and the proportion of CD34+ and CD38− cells were reduced with higher concentrations of Plerixafor. The reduction of self-renewing proliferation by Plerixafor was not observed in controls consisting of HSC without MSC. Plerixafor also rendered the CXCR4 receptors undetectable on the surface of CD34+ cells for up to 6 days, most probably due to a persisting blockade of the antibody-binding site. Human HSC co-cultured with MSC showed an increased cell division rate and produced a higher proportion of CD34+/CD38− cells. Different MSC culture media were systematically analysed in this setting and subtle differences in the supportive function could be observed. The addition of Plerixafor neutralized the effects of MSC, leading to an earlier loss of “stemness” and to lineage-commitment of HSC, thus providing evidence for the role of the CXCR4/SDF1α axis in terms of supportive function of MSC for self-renewal of HSC. Disclosures: Ho: Genzyme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Experimental Hematology, Elsevier BV, Vol. 44, No. 6 ( 2016-06), p. 508-518
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2005403-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 1396-1396
    Abstract: The interaction between hematopoietic stem cells and their niche is essential for the balance between self-renewal and differentiation. We previously demonstrated that intercellular connections in mesenchymal stem cells (MSC) are realized by occasional gap junctions and frequent adherens junctions, comprising specific cadherin-catenin-complexes. Using MSC-feeder-layer as a surrogate model for the hematopoietic stem cell (HSC) niche, we have analyzed the intercellular junctional complexes between HSC and MSC. MSC were obtained from bone marrow aspirates from healthy voluntary donors. HSC were isolated from umbilical cord blood. Using advanced confocal laser scanning in combination with deconvolution and volume rendering software, we were able to produce 3D-images of intercellular junctions between HSC and MSC. We used a panel of antibodies specific for various components of tight, gap and adherens junctions. Additionally, we compared the data to human and bovine bone marrow tissue in situ. We could show that intercellular connections between HSC and MSC are mainly realized by podia formation of the HSC linking to the adjacent MSC. These podia vary greatly in length and shape (uropodia, filopodia). Along these podia and especially at the contact zone to the MSC, we have identified the cytoplasmic plaque proteins alpha- and beta-catenin and protein p120ctn, as well as the transmembrane glycoprotein N-cadherin. This study provided solid evidence for the direct and intimate cellular interaction of HSCs with their niche. Direct cell contact represents a key factor for the regulation of self-renewal versus differentiation. The examination of the specific function of catenins, p120ctn and N-cadherin in this process is concurrently underway.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...