GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 15 ( 2015), p. 153102-
    Abstract: Density functional theoretical (B3PW91) method with LANL2 DZ basis sets has been used to study the equilibrium structure, total energy, the highest occupied molecular orbital (HOMO) energy level, the lowest unoccupied molecular orbital(LUMO) energy level, energy gap, dipole moment, atomic charge distribution, infrared intensities of CdSe ground state molecule etc. in different intense electric fields. The excitation energy, wavelengths and oscillator strengths in ground state and the first nine different excited states are investigated by the time-dependent density functional (B3PW91) method in external electric fields. Results show that the excitation wavelength is in agreement with the experimental result and the excitation energy is close to the experimental data. With the increase of the external field, the bond length, electric dipole moment, infrared intensities are observed to decrease first, and increase afterwards. But the HOMO energy, LUMO energy, energy gap are seen to decrease. And the total energy and harmonic frequency are found to increase first, and then decrease. In addition, the external electric fields have significant effects on the excitation energy, wavelength and oscillator strengths of CdSe molecule.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 4 ( 2015), p. 043101-
    Abstract: The Hartree-Fork (HF) method with LANL2DZ basis set is used to investigate the equilibrium structures, atomic charge distributions, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, dipole moments, harmonic frequencies and infrared intensities of ZnSe under different external electric fields ranging from -0.025 to 0.040 a.u. The excitation energies, transition wavelengths and oscillator strengths under the same external electric fields are calculated by the time-dependent-HF method. The results show that the bond length and electric dipole moment are proved to be first decreasing, and then increasing with the variation of the external field; the total energy is found to decrease linearly with the variation of external field; but the HOMO energy and energy gap are proved to increase with the variation of external field. The harmonic frequency and LUMO energy are found to first increase, and then decrease, but the infrared intensities are proved to first decrease, and then increase. The external electric field has significant effect on the excitation properties of ZnSe molecule. The excited energies from ground state to the first nine excited states are found to increase, and the transition wavelengths are decreasing with the variation of the external field. Meanwhile, the strongest excited state becomes very weak, and the weak excited state becomes strongest by the external field. The excitation properties of ZnSe material can be changed with external electric field.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...