GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (8)
  • Wu Bin  (8)
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2013
    In:  Acta Physica Sinica Vol. 62, No. 3 ( 2013), p. 035201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 3 ( 2013), p. 035201-
    Abstract: The neutral beam injection (NBI) system is applied to the experimental advanced superconducting tokamak (EAST). It will excite some Alfvn instabilities when the plasma characteristics are improved. The numerical research on the NBI-induced discrete Alfvn eigenmode (TAE) and toroidal effect-induced Alfvn eigenmode (TAE) in the pedestal region is presented in the paper. The research results show that plenty of TAEs appear in this region. The TAE is very different from the TAE. These modes are trapped by the -induced potential wells along the magnetic field line. Due to negligible continuum damping via wave energy tunneling, similar to TAE, the TAE can also be readily destabilized by energetic particles. Differently, TAE frequency spectrum is more broad than TAE, and they are existed not only inside the gap but also outside the gap. The growth rate increases with injected power increasing. This instability maybe affects the physical behavior of the tokamak and the confinement of the plasma.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2013
    In:  Acta Physica Sinica Vol. 62, No. 1 ( 2013), p. 018104-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 1 ( 2013), p. 018104-
    Abstract: Vanadium thin films are deposited by magnetron sputter. Then VOx thin films are fabricated by a series of rapid thermal processes (RTPs) in pure oxygen environment. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscope are employed to analyze crystalline structure of the thin film, phase composition and surface morphology. Electrical and optical properties of VOx thin film are measured by the four-point probe method and THz time-domain spectroscopy technology, respectively. The results reveale that the VOx thin film which is composed mainly of V2O5 and VO2 has the properties of phase transition to a certain extent within the RTP condition of heat preservation temperature and time, and the overall valence of vanadium remains unchanged, no matter whether the RTP condition is the same. The best performance VOx thin film can be obtained under the moderate RTP condition, such as 500 ℃ 25 s, and this film can also modulate the THz wave.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2012
    In:  Acta Physica Sinica Vol. 61, No. 18 ( 2012), p. 188101-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 61, No. 18 ( 2012), p. 188101-
    Abstract: Metal-insulator phase transition VOX thin film is fabricated on a Si 100 substrate after the metal V thin film, prepared by direct current facing targets magnetron sputtering has been rapidly thermally treated first in pure oxygen environment and then in pure nitrogen environment. The thermal treatment conditions are 430℃/40 s, 450℃/40 s, 470℃/40 s, 450℃/30 s, 450℃/50 s in pure oxygen environment and 500℃/15 s in pure nitrogen environment. XRD, XPS, AFM and SEM are imployed to analyze the crystalline structure, valentstate and the components, morphology of the thin film. The electrical and optical characteristic of the thin film are analyzed by the Four-point probe method and THz time domain spectrum technology. Results reveal that after 450℃/40 s rapid thermal treatment in pure oxygen environment the metal V thin film turns into VOX thin film which has low properties of phase transition. Before and after heating, the change of resistivity reaches 2 orders of magnitude and the range of the THz transmission intensity shows smooth change. In order to improve the properties of phase transition, the VOX thin film is treated by 500℃/15 s rapid thermal process in pure nitrogen environment. After that, we find that the thin film shows a good phase transition performance, accompanied by a sheet square resistance drop of above 3 orders of magnitude and a 56.33% reduction in THz transmission intensity.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 2 ( 2018), p. 020702-
    Abstract: An ultra-low frequency vibrational noise isolation apparatus from external vibration can be a critical factor in many fields such as precision measurement, high-technology manufacturing, scientific instruments, and gravitational wave detection. To increase the accuracies of these experiments, well performed vibration isolation technology is required. Until recently the cold atom gravimeter has played a crucial role in measuring the acceleration due to gravity and earth gravity gradient. The vibration isolation is one of the key techniques in the cold atom gravimeter. To reduce the vibrational noise caused by the reflecting mirror of Raman beams in the cold atom gravimeter, a compact active low-frequency vibration isolation system based on sliding-mode robust control is designed and demonstrated. The sliding-mode robust control active vibration isolation method is used to solve the vibration problem of Raman mirror in the cold atomic gravimeter. The purpose of vibration control is that the controller enables the system to be at zero state as the system states are away from the equilibrium due to vibration disturbance. In this system, the mechanical setup is based on a commercial passive isolation platform which only plays a role at higher frequency. A sliding-mode robust control subsystem is used to process and feed back the vibration measured by a seismometer which can measure the velocity of the ground vibration. A voice coil actuator is used to control and cancel the motion of a passive vibration isolation platform. The simulation and experiment results of vibration isolation platform show, on the one hand, that the vibration noise power spectral density decreases by up to 99.9%, and that the phase noise in cold atom interferometry produced by vibration decreases by up to nearly 85.3% compared with the results of the passive vibration isolation platform. On the other hand, compared with the lead-lag control method, the vibration noise power spectral density decreases by up to 83.3% and the phase noise in cold atom interferometry produced by vibration decreases by nearly 40.2%. Therefore, the sliding-mode robust control has the advantages of less tuning parameters, strong anti-interference ability, and more obvious vibration isolating effect.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 13 ( 2013), p. 134301-
    Abstract: The characteristics of multi-point defect phononic crystal (PC) composed of square array of circular steel cylinders in water are investigated experimentally using the ultrasonic immersion transmission technique. The band structures of the PCs are obtained by the finite element method with 9×9 supercell approximation. A very good agreement with the experimental results, numerical transmission data and eigenmode frequencies of band structures is observe. Meanwhile the number of multi-point defects affects the localized modes of cavities and propagation characteristics, and the eigenmodes of defects show the symmetric or antisymmetric modes in designing the new type of acoustic wave devices.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 18 ( 2013), p. 189202-
    Abstract: The M change characteristics in continuing current process of negative cloud-to-ground lightning discharge and artificially triggering lightning discharge are comparatively analyzed using the synchronous data of optical channel high-speed video camera pictures, electric field changes on ground and the peak very high frequency radiation. The results indicate that M process could be identified accurately from synchronous data of optical channel luminance and electric field changes on ground. There are lots of rapid changes of electric field (MP) prior to and during classic M change. And the M changes caused by lots of MP changes. There is mostly no difference in waveform characteristics between M changes and K changes and their generated physical mechanisms are similar. MP change is a rapid change of electric field corresponding to the rapid flow of charge caused by the breakdown process in the stage of continuous current process and accompanied with channel sudden brightening and high intensity radiation. Most of the M changes are unipolar, positive or negative and a few are irregular and last within 0.1 ms. Only M change in close lightning discharge exhibits a classic U-shaped structure because of its waveform mostly caused by static electric field, and its duration is about from 0.2 to 0.8 ms. MP and K changes are all caused by the breakdown. The difference between MP and K changes is that the electric charges flow into the original return stroke channel in the process of MP change, but not in the process of K change.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 19 ( 2018), p. 190302-
    Abstract: The tilt angle of a cold atom gravimeter (CAG) could have a significant influence on the measurement of absolute gravity. The measurement, manipulation, and compensation of the tilt for CAG need to be conducted in order to obtain a high-accuracy absolute gravity measurement. In this paper, firstly, the influences of tilt on absolute gravity measurement under four different conditions are analyzed theoretically by taking into account the position of vacuum system relative to Raman retro-reflection mirror. Then, the experimental investigation is carried out and it is found that the measured results agree well with the theoretical prediction curves. According to the analysis above, we design a scheme for absolute gravity measurement based on two inclinometers, mainly to solve the problem of long-term tilt drift of CAG especially in harsh measurement environment. In this scheme, a high-resolution inclinometer is used to record the tilt angle of Raman retro-reflection mirror, which is fixed on a passive vibration isolation platform. Besides, another inclinometer is utilized to monitor the tilt angle of vacuum chamber of the CAG. By doing so, the vibration noise can be suppressed and the tilt data can be measured with a high precision. Finally, the experimental verification of this proposal is carried out based on our homemade compact cold atom gravimeter, and the high accuracy absolute gravity measurement is realized in a complex workshop environment. Since the vibration noise of Raman mirror is improved by using the vibration isolation platform, the sensitivity of our CAG can reach 319 μGal √Hz. Besides, we measure the long-term changes of gravity with time and find that the experimental results are consistent with the curves calculated by theoretical tidal model. Moreover, due to the precise measurement and compensation for the tilt drift, the accuracy of our CAG is estimated at 12.3 μGal. In order to evaluate this system accuracy, a comparison between our CAG and the FG5 at the same measured site is made. The absolute gravity values determined by both gravimeters coincide with each other. In this paper, we provide a feasible scheme for measuring the absolute gravity in the complex environment. The experimental demonstration of this measurement scheme is performed thereby acquiring some valuable reference data for the practical use of CAG.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 21 ( 2017), p. 218101-
    Abstract: Due to its unique properties, graphene is a promising two-dimensional material in optoelectronic and energy applications. While the mobility of single layer graphene is extremely high, it has a zero bandgap. This feature restricts various applications of graphene in the field of semiconductor devices. Bilayer graphene, despite the nature of zero bandgap in its pristine form, can be tuned to open bandgap via a dual-gated vertical electrical field in a controlled manner. However, the size and layer number of mechanically exfoliated and liquid phase exfoliated graphene are poorly controlled. Controllable synthesis of large-sized bilayer graphene is an important research direction. This review summarizes a series of work including the controlled synthesis of bilayer graphene by chemical vapor deposition method and bilayer graphene devices. Specifically, growth mechanism of bilayer graphene is dependent on the type of supporting substrate and experimental condition. In the case of Ni substrate, bilayer graphene is grown along the segregation route. On the other hand, graphene growth on Cu is a surface-mediated process due to the extremely low solubility of C in Cu bulk. Depending on the concentration ratio between CH4 and H2, the growth mode of bilayer graphene can be tuned to be similar to Volmer-Weber or Stranski-Krastanov mode, in which the second layer is either grown under or above the first graphene layer. The dynamic growth of bilayer graphene can be further understood by a chemical gate effect and the process in a confined space. Moreover, here in this paper we present several approaches to realize the better control of bilayer graphene growth by modulating the experimental conditions. In terms of device applications for bilayer graphene, in this review we mention two typical applications including field-effect-transistors and hot-electron bolometers. Compared with conventional silicon-based hot-electron bolometer, the bilayer graphene based hot-electron bolometer has a small heat capacity and weak electron-phonon coupling, leading to high sensitivity, fast response, and small thermal noise-equivalent power. Such a bilayer graphene bolometer shows an exceptionally low noise-equivalent power and intrinsic speed three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures. Finally, the outlook and challenge for future research are also given. While significant progress has been made in the past several years, the controlled growth of bilayer or multi-layer graphene is still a key challenge, and the growth mechanism of bilayer graphene is not yet understood clearly. There is still much room for controlling graphene layer numbers, twisted angles, size, quality, and yield by optimizing the conditions. On the other hand, for the device applications of bilayer graphene, it is highly desired to develop high-performance bilayer graphene-based electronic devices.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...