GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Wu, Qiang  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    In: Molecules, MDPI AG, Vol. 27, No. 9 ( 2022-04-27), p. 2787-
    Abstract: Plastic-bonded explosives (PBXs) consisting of explosive grains and a polymer binder are commonly synthesized to improve mechanical properties and reduce sensitivity, but their intrinsic chemical behaviors while subjected to stress are not sufficiently understood yet. Here, we construct three composites of β-HMX bonded with the HTPB binder to investigate the reaction characteristics under shock loading using the quantum-based molecular dynamics method. Six typical interactions between HMX and HTPB molecules are detected when the system is subjected to pressure. Although the initial electron structure is modified by the impurity states from HTPB, the metallization process for HMX does not significantly change. The shock decompositions of HMX/HTPB along the (100) and (010) surface are initiated by molecular ring dissociation and hydrogen transfer. The initial oxidations of C and H within HTPB possess advantages. As for the (001) surface, the dissociation is started with alkyl dehydrogenation oxidation, and a stronger hydrogen transfer from HTPB to HMX is detected during the following process. Furthermore, considerable fragment aggregation is observed, which mainly derives from the formation of new C−C and C−N bonds under high pressure. The effect of cluster evolution on the progression of the following reaction is further studied by analyzing the bonded structure and displacement rate.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 16 ( 2023-08-08), p. 12568-
    Abstract: The structure and properties of nano-carbon materials formed in explosives detonation are always a challenge, not only for the designing and manufacturing of these materials but also for clearly understanding the detonation performance of explosives. Herein, we study the dynamic evolution process of condensed-phase carbon involved in 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) detonation using the quantum-based molecular dynamics method. Various carbon structures such as, graphene-like, diamond-like, and “diaphite”, are obtained under different pressures. The transition from a C sp2- to a sp3-hybrid, driven by the conversion of a hexatomic to a non-hexatomic ring, is detected under high pressure. A tightly bound nucleation mechanism for diamond-like carbon dominated by a graphene-like carbon layer is uncovered. The graphene-like layer is readily constructed at the early stage, which would connect with surrounding carbon atoms or fragments to form the tetrahedral structure, with a high fraction of sp3-hybridized carbon. After that, the deformed carbon layers further coalesce with each other by bonding between carbon atoms within the five-member ring, to form the diamond-like nucleus. The complex “diaphite” configuration is detected during the diamond-like carbon nucleation, which illustrates that the nucleation and growth of detonation nano-diamond would accompany the intergrowth of graphene-like layers.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...