GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wu, Jiong  (2)
  • Natural Sciences  (2)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 45 ( 2017-11-07)
    Abstract: Chronic obstructive pulmonary disease (COPD) has been linked to particulate matter (PM) exposure. Using transcriptomic analysis, we demonstrate that diesel exhaust particles, one of the major sources of particulate emission, down-regulated genes located in mitochondrial complexes I and V and induced experimental COPD in a mouse model. 1-Nitropyrene was identified as a major toxic component of PM-induced COPD. In the panel study, COPD patients were found to be more susceptible to PM than individuals with normal lung function due to an increased inflammatory response. Mechanistically, exposure to PM in human bronchial epithelial cells led to a decline in CCAAT/enhancer-binding protein alpha (C/EBPα), which triggered aberrant expression of NADH dehydrogenase genes and ultimately led to enhanced autophagy. ATG7-deficient mice, which have lower autophagy rates, were protected from PM-induced experimental COPD. Using metabolomics analysis, we further established that treatment with taurine and 3-methyladenine completely restored mitochondrial gene expression levels, thereby ameliorating the PM-induced emphysema. Our studies suggest a potential therapeutic intervention for the C/EBPα/mitochondria/autophagy axis in PM-induced COPD.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Nature Vol. 621, No. 7979 ( 2023-09-21), p. 610-619
    In: Nature, Springer Science and Business Media LLC, Vol. 621, No. 7979 ( 2023-09-21), p. 610-619
    Abstract: The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions 1,2 . Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS) 3 and the transcription regulator Integrator-PP2A (INTAC) 4–6 . Through SSB1-mediated recognition of single-stranded DNA, SOSS–INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS–INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS–INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...