GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 13 ( 2011-07-01), p. 3484-3519
    Abstract: The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 5 ( 2006-03-01), p. 675-697
    Abstract: The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 13 ( 2022-07-01), p. 4207-4231
    Abstract: Research over the past decade has demonstrated that dynamical forecast systems can skillfully predict pan-Arctic sea ice extent (SIE) on the seasonal time scale; however, there have been fewer assessments of prediction skill on user-relevant spatial scales. In this work, we evaluate regional Arctic SIE predictions made with the Forecast-Oriented Low Ocean Resolution (FLOR) and Seamless System for Prediction and Earth System Research (SPEAR_MED) dynamical seasonal forecast systems developed at the NOAA/Geophysical Fluid Dynamics Laboratory. Compared to FLOR, we find that the recently developed SPEAR_MED system displays improved skill in predicting regional detrended SIE anomalies, partially owing to improvements in sea ice concentration (SIC) and thickness (SIT) initial conditions. In both systems, winter SIE is skillfully predicted up to 11 months in advance, whereas summer minimum SIE predictions are limited by the Arctic spring predictability barrier, with typical skill horizons of roughly 4 months. We construct a parsimonious set of simple statistical prediction models to investigate the mechanisms of sea ice predictability in these systems. Three distinct predictability regimes are identified: a summer regime dominated by SIE and SIT anomaly persistence; a winter regime dominated by SIE and upper-ocean heat content (uOHC) anomaly persistence; and a combined regime in the Chukchi Sea, characterized by a trade-off between uOHC-based and SIT-based predictability that occurs as the sea ice edge position evolves seasonally. The combination of regional SIE, SIT, and uOHC predictors is able to reproduce the SIE skill of the dynamical models in nearly all regions, suggesting that these statistical predictors provide a stringent skill benchmark for assessing seasonal sea ice prediction systems.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 15 ( 2021-08), p. 6207-6233
    Abstract: Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen/Bellingshausen, Indian, and west Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper-ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal time scales.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 13 ( 2011-07-01), p. 3520-3544
    Abstract: This paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL Climate Model version 3 (CM3) is formulated with effectively the same ocean and sea ice components as the earlier CM2.1 yet with extensive developments made to the atmosphere and land model components. Both CM2.1 and CM3 show stable mean climate indices, such as large-scale circulation and sea surface temperatures (SSTs). There are notable improvements in the CM3 climate simulation relative to CM2.1, including a modified SST bias pattern and reduced biases in the Arctic sea ice cover. The authors anticipate SST differences between CM2.1 and CM3 in lower latitudes through analysis of the atmospheric fluxes at the ocean surface in corresponding Atmospheric Model Intercomparison Project (AMIP) simulations. In contrast, SST changes in the high latitudes are dominated by ocean and sea ice effects absent in AMIP simulations. The ocean interior simulation in CM3 is generally warmer than in CM2.1, which adversely impacts the interior biases.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...