GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (1)
  • Witte, Otto W.  (1)
  • 2010-2014  (1)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (1)
Person/Organisation
Language
Years
  • 2010-2014  (1)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2010
    In:  Stroke Vol. 41, No. 3 ( 2010-03)
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 41, No. 3 ( 2010-03)
    Abstract: Background and Purpose— The potassium chloride cotransporter 2 (KCC2) is the main neuronal chloride extruder in the adult nervous system. Therefore, KCC2 is responsible for an inwardly directed electrochemical gradient of chloride that leads to hyperpolarizing GABA-mediated responses. Under some pathophysiological conditions, GABA has been reported to be depolarizing because of a downregulation of KCC2. This is the first study to our knowledge analyzing the expression of KCC2 after a focal cerebral ischemia. Methods— Mild and severe ischemia were induced in rats by a transient occlusion of the middle cerebral artery for 30 and 120 minutes, respectively. KCC2 mRNA and protein expression were studied in the ischemic hemisphere after different reperfusion times (2 hour, 1 day, 7 days, 30 days, 168 days) by using quantitative polymerase chain reaction, Western blotting, and immunohistological staining. Results— We found a substantial decrease of KCC2 mRNA and protein levels in the ischemic hemisphere, with a stronger downregulation of KCC2 after severe vs mild ischemia. Long-term surviving cells expressing KCC2 could be detected in the infarct core. These cells were identified as GABAergic interneurons mainly expressing parvalbumin. Conclusions— Our study revealed a substantial neuron-specific downregulation of KCC2 after focal cerebral ischemia.
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2010
    detail.hit.zdb_id: 1467823-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...