GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 8, No. 12 ( 2018-12-01), p. 1548-1565
    Abstract: Malignant pleural mesothelioma (MPM) is a highly lethal cancer of the lining of the chest cavity. To expand our understanding of MPM, we conducted a comprehensive integrated genomic study, including the most detailed analysis of BAP1 alterations to date. We identified histology-independent molecular prognostic subsets, and defined a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity. We also report strong expression of the immune-checkpoint gene VISTA in epithelioid MPM, strikingly higher than in other solid cancers, with implications for the immune response to MPM and for its immunotherapy. Our findings highlight new avenues for further investigation of MPM biology and novel therapeutic options. Significance: Through a comprehensive integrated genomic study of 74 MPMs, we provide a deeper understanding of histology-independent determinants of aggressive behavior, define a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity, and discovered strong expression of the immune-checkpoint gene VISTA in epithelioid MPM. See related commentary by Aggarwal and Albelda, p. 1508. This article is highlighted in the In This Issue feature, p. 1494
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 70, No. 7 ( 2021-07), p. 1965-1976
    Abstract: CD73 is a membrane-bound enzyme crucial in adenosine generation. The adenosinergic pathway plays a critical role in immunosuppression and in anti-tumor effects of immune checkpoint inhibitors (ICI). Here, we interrogated CD73 expression in a richly annotated cohort of human lung adenocarcinoma (LUAD) and its association with clinicopathological, immune, and molecular features to better understand the role of this immune marker in LUAD pathobiology. Materials and methods Protein expression of CD73 was evaluated by immunohistochemistry in 106 archived LUADs from patients that underwent surgical treatment without neoadjuvant therapy. Total CD73 (T +) was calculated as the average of luminal (L +) and basolateral (BL +) percentage membrane expression scores for each LUAD and was used to classify tumors into three groups based on the extent of T CD73 expression (high, low, and negative). Results CD73 expression was significantly and progressively increased across normal-appearing lung tissue, adenomatous atypical hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, and LUAD. In LUAD, BL CD73 expression was associated with an increase in PD-L1 expression in tumor cells and increase of tumor-associated immune cells. Stratification of LUADs based on T CD73 extent also revealed that tumors with high expression of this enzyme overall exhibited significantly elevated immune infiltration and PD-L1 protein expression. Immune profiling demonstrated that T-cell inflammation and adenosine signatures were significantly higher in CD73-expressing lung adenocarcinomas relative to those lacking CD73. Conclusion Our study suggests that higher CD73 expression is associated with an overall augmented host immune response, suggesting potential implications in the immune pathobiology of early stage lung adenocarcinoma. Our findings warrant further studies to explore the role of CD73 in immunotherapeutic response of LUAD.
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 70, No. 7 ( 2021-07), p. 1977-1978
    Abstract: The original version of this article unfortunately contained a mistake.
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Reports, Elsevier BV, Vol. 23, No. 1 ( 2018-04), p. 194-212.e6
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Oncotarget, Impact Journals, LLC, Vol. 9, No. 18 ( 2018-03-06), p. 14268-14284
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 374-374
    Abstract: Targeted therapies designed to inhibit the vascular endothelial growth factor (VEGF) pathway have been extensively evaluated in the treatment of malignancies including Non-Small Cell Lung Cancer (NSCLC). VEGF pathway inhibitors such as bevacizumab, or the multitargeted receptor tyrosine kinase inhibitors (TKIs) vandetanib and sorafenib, have been shown to prolong progression-free survival (PFS) and/or overall survival (OS). These benefits, however, have been modest, seen only in subsets of patients. Thus, predictive markers for identifying which patients are likely to benefit are critically needed. Although expression of VEGF receptor-2 (VEGFR-2, also known as KDR) was initially thought to primarily occur in endothelial cells, VEGFR-2 has been detected on malignant cells, including lung cancer cells, and in NSCLC, overexpression of VEGFR-2 on tumor cells is associated with a poor clinical outcome. Amplification of KDR has been detected in lung cancer specimens at a relatively high frequency (9% and 32%). The consequences of KDR copy number gains (CNGs) are not yet understood. Recently, we have shown that NSCLC cell lines with KDR copy number gains (CNGs) were associated with in vitro resistance to platinum chemotherapy, and KDR CNG predicted worse overall survival in patients who received platinum adjuvant therapy but not in untreated patients. We investigated the hypothesis that NSCLC tumor cells with KDR CNG display increased sensitivity to VEGFR TKIs compared to tumor cells without KDR CNG. In tumor cell lines with KDR CNG, treatment with exogenous VEGF ligand enhanced cell motility and this was inhibited by VEGFR blockade with TKIs. Multiple receptor tyrosine kinases have been shown to drive HIF-1α levels, and NSCLC cells with KDR CNG express elevated levels of HIF-1α in normoxic conditions compared to NSCLC cell lines without KDR CNG. Here, we show that in NSCLC cell lines with KDR CNG, VEGFR TKIs decreased protein levels of HIF-1α and HIF-1α- regulated proteins. Furthermore, we report a clinical case in which a NSCLC patient with KDR CNG as determined by SNP array had a partial response to VEGFR inhibition with sorafenib. Citation Format: Monique B. Nilsson, Tina Cascone, Jayanthi Gudikote, Emily Roarty, Lixia Diao, Andrew Koo, Sumankalai Ramachandran, Erick Riquelme, Hai Tran, Ignacio Wistuba, David P. Carbone, John Heymach. KDR amplification in NSCLC is associated with sensitivity to VEGFR tyrosine kinase inhibitors. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Can cer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 374. doi:10.1158/1538-7445.AM2013-374
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 3579-3579
    Abstract: Background: Head and neck squamous cell carcinoma (HNSCC) is the fifth most common cancer. In 2013, there were ∼53,000 newly diagnosed cases and ∼11,000 deaths related to HNSCC in the USA. Overexpression of EGFR is seen in 90% HNSCC; but, only ∼10% of patients treated with the anti-EGFR antibody cetuximab show increased response rates to cetuximab and these eventually gain resistance by poorly-characterized mechanisms. We showed an association between EMT and resistance to EGFR inhibitors in lung cancers (LC) and HNSCC using a 76-gene EMT signature. AXL was identified as a therapeutic candidate linking EMT and drug resistance, showing significantly higher expression in erlotinib resistant cell lines. Other groups have linked AXL to drug resistance in HNSCC, LC and breast cancers. Here we identify signaling pathways that are regulated by AXL, mediate drug resistance, and identify potential therapeutic targets to combine with AXL inhibition. Methods: Using 6 clinical cohorts including The Cancer Genome Atlas (TCGA N = 493) and PROSPECT (N = 142) across 3 cancer types, we identified genes whose mRNA expression was highly correlated with AXL. Protein profiling by reverse phase protein array (RPPA) to analyze total and phospho-proteins in HNSCC cell lines, pre- and post-AXL inhibitor treatment was used to identify pathways altered upon AXL inhibition. The response to AXL inhibition was assayed in HNSCC cell lines by proliferation assays and correlated to mRNA and protein expression. Results: Using gene-expression and RPPA analysis we saw the highest association of AXL with pathways involved in EMT (TGF-β, Rho GTPases), autophagy and immune response. Following treatment with an AXL inhibitor, we observed a decrease in phospho-proteins in the PI3K-AKT pathway, increased expression of markers associated with apoptosis, an epithelial phenotype, and p-EGFR. Using an AXL knockdown model system in HNSCC cell lines, we validated an increase in EGFR signaling (EGFR and p-Erk), epithelial (E-cadherin), apoptotic (cleaved PARP and caspase-7) and DNA repair proteins (RAD51, ku-80 and PARP) and a decrease in Slug, Twist and ZEB-1, indicating that AXL may be directly involved in mediating EMT. AXL knockdown reduced proliferation of HNSCC cell lines and AXL inhibition was able to re-sensitize resistant HNSCC cell lines to erlotinib, an EGFR tyrosine kinase inhibitor. Conclusions: In summary, we identified potential therapeutic targets that are upregulated with AXL expression in HNSCC and LC patient tumors and cell lines. Using AXL inhibitor and knockdown in HNSCC cell lines, we validated biomarkers involved in EMT, EGFR signaling and apoptosis that are altered upon AXL inhibition. AXL inhibition led to an epithelial phenotype in cells and re-sensitized resistant cells to erlotinib. Studies are ongoing to validate the mechanisms of AXL-mediated drug resistance and to identify potential combination treatments that can synergize with AXL-inhibition. Citation Format: Kavitha Balaji, Robert Cardnell, Lixia Diao, Pan Tong, Milena Mak, You Hong Fan, Fatemeh Masrorpour, Steven L. Warner, David J. Bearss, Ignacio Wistuba, Gordon B. Mills, John Heymach, Khandan Keyomarsi, Jing Wang, Lauren Averett Byers. Identification of biomarkers of AXL-mediated drug resistance in head and neck squamous cell carcinoma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3579. doi:10.1158/1538-7445.AM2015-3579
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 968-968
    Abstract: Introduction The development of more effective treatment strategies for LUAC bearing activating mutations in KRAS is hampered by the biological heterogeneity of KRAS-mutant tumors. The molecular underpinnings that drive this process are poorly characterized. Here, we implemented an integrated approach to the discovery of biologically distinct subsets of KRAS-mutant LUAC and explored their molecular vulnerabilities. Methods Our datasets consisted of 68 KRAS-mutant tumors from TCGA, 88 additional chemo-naive KRAS-mutant LUACs (PROSPECT and Chitale datasets) and 36 platinum-refractory LUACs from the BATTLE-2 clinical trial. Non-negative matrix factorization (NMF) consensus clustering was applied to RNASeq data as previously described. Signature enrichment was assessed using Gene Set Enrichment Analysis (GSEA). Results NMF consensus clustering identified three robust subsets of KRAS-mutant LUAC that were reproducible across diverse clinical datasets of early-stage, chemotherapy-naive and metastatic, chemo-refractory tumors. Distinct KRAS-mutant alleles were not differentially represented in the three subgroups (P = 0.3). In contrast, the subgroups were dominated, respectively, by co-occurring genetic events in STK11/LKB1 (termed the KL subgroup) (P = 1.03e−05), TP53 (KP) (P = 3.8e-06) and low expression of TTF1 coupled with frequent CDKN2A/B inactivation (KC) (P = 0.004 and P = 0.002). Distinct patterns of intracellular signaling were detected in the three subsets. KL tumors showed evidence of LKB1-AMPK pathway inactivation and adaptation to energetic, proteotoxic and oxidative stress, the latter exemplified by near ubiquitous inactivation of KEAP1 and up-regulation of a NRF2-driven antioxidant signature. KP tumors carried a higher somatic mutation load and were characterized by prominent inflammation and up-regulation of several immune checkpoint effector molecules, including PD-L1. KC tumors frequently displayed a GI-like differentiation program, suppression of MTORC1 signaling and elevated wild-type p53 transcriptional output. Using a large panel of KRAS-mutant NSCLC cell lines we detected co-mutation-dependent patterns of drug sensitivity. Specifically, KL cell lines showed enhanced sensitivity to several structurally distinct HSP90 inhibitors. These results were confirmed in panels of isogenic cell lines. Mechanistically, treatment with ganetespib resulted in concurrent degradation of several molecules with established role in supporting the fitness of LKB1-deficient cells. Conclusions Our work identifies three major subsets of KRAS-mutant LUAC - dominated by co-occurring genetic events - with distinct biology and therapeutic vulnerabilities. Citation Format: Ferdinandos Skoulidis, Lauren Byers, Lixia Diao, Vassiliki Papadimitrakopoulou, Pan Tong, Julie Izzo, Carmen Behrens, Humam Kadara, Edwin R. Parra, Jaime Rodriguez-Canales, Jianjun Zhang, Uma Giri, Jayanthi Gudikote, Maria Angelica Cortez, Chao Yang, You Hong Fan, Michael Peyton, Luc Girard, Kevin R. Coombes, Carlo Toniatti, Timothy P. Heffernan, Murim Choi, Garrett M. Frampton, Vincent Miller, John N. Weinstein, Roy S. Herbst, Kwok-Kin Wong, Jianhua Zhang, Padmanee Sharma, Gordon M. Mills, Waun Ki Hong, John D. Minna, James P. Allison, Andrew Futreal, Jing Wang, Ignacio Wistuba, John V. Heymach. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma (LUAC) with distinct biology and therapeutic vulnerabilities. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 968. doi:10.1158/1538-7445.AM2015-968
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 9, No. 415 ( 2017-11-08)
    Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance mediated by T790M-independent mechanisms remains a major challenge in the treatment of non–small cell lung cancer (NSCLC). We identified a targetable mechanism of EGFR inhibitor resistance whereby stress hormones activate β 2 -adrenergic receptors (β 2 -ARs) on NSCLC cells, which cooperatively signal with mutant EGFR, resulting in the inactivation of the tumor suppressor, liver kinase B1 (LKB1), and subsequently induce interleukin-6 (IL-6) expression. We show that stress and β 2 -AR activation promote tumor growth and EGFR inhibitor resistance, which can be abrogated with β-blockers or IL-6 inhibition. IL-6 was associated with a worse outcome in EGFR TKI–treated NSCLC patients, and β-blocker use was associated with lower IL-6 concentrations and improved benefit from EGFR inhibitors. These findings provide evidence that chronic stress hormones promote EGFR TKI resistance via β 2 -AR signaling by an LKB1/CREB (cyclic adenosine 3′,5′-monophosphate response element–binding protein)/IL-6–dependent mechanism and suggest that combinations of β-blockers with EGFR TKIs merit further investigation as a strategy to abrogate resistance.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3404-3404
    Abstract: Background: MPM is caused by lethal neoplastic growth of the pleura surrounding lungs. It is resistance to most standard anti-cancer treatment regimens and needs discovery of newer therapeutic approaches. MPM is characterized by massive loco-regional invasion of the malignant pleural cells into the lung parenchyma. Twist1 is a transcription factor, which promotes invasion and metastasis of tumor cells, increases chemotherapeutic resistance and is involved in the pathobiology of many cancers. Also recent studies have highlighted the potential of twist1 as a therapeutic target in cancer. But there is no report investigating its function in mesothelioma. Methods: We extracted total RNA from 53 frozen resected tumor tissue specimens, comprised of 39 epitheloid, 7 sarcomatoid and 7 biphasic histotypes, along with paired normal tissue. The RNA was labeled and hybridized to Affymetrix U133 plus 2.0 microarray to obtain transcriptomic profiles. Bioinformatic analysis of the microarray data using a 2 sample t-test was applied, on a probe-by-probe basis followed by Beta-uniform Mixture for multiple comparisons, to determine the differences between tumor vs normal specimens. The microarray results were validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) using Taqman assays on the ABI 7300 platform. For all qRT-PCR experiments the twist1 transcript levels were determined relative to endogenous GAPDH as control using ΔΔCT calculation. We performed Western blot analysis on a panel of 16 mesothelioma cell lines including Met-5A (SV-40 immortalized) and HCT-4012 (telomerase immortalized) pleural mesothelial control cell lines. Results: The bioinformatic analysis of microarray data showed that twist1 transcript level was 8.7 fold higher in tumors (p = 1.1E-16) compared to paired normal specimens. Using qRT-PCR, we compared twist1 transcript levels in 12 pairs of tumor vs paired normal tissue specimens and found that twist1 was upregulated to more than 10 fold in MPM tumors (p & lt; E-4). Western blot showed that 10 MPM cancer cell lines had higher expression of twist1 protein compared to Met-5A and HCT-4012 cell lines. The highest expression was seen in 2 of the sarcomatoid cell lines - RS5 and DM3, suggesting a correlation with metastatic phenotype since sarcomatoid tumors are highly metastatic in nature. Conclusion: Our preliminary findings suggest that twist1 is upregulated in MPM tumors and cell lines and may play a role in the development of MPM. Further studies are needed to investigate its role in the process of tumorigenesis and metastasis. Supported by Grants: DoD W81XWH-07-1-0306 (I.I.W and AST), Fleming Foundation, IASLC Young Investigator Award 2011-2013 (MS). Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3404. doi:1538-7445.AM2012-3404
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...