GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2010
    In:  Blood Vol. 116, No. 21 ( 2010-11-19), p. 1700-1700
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1700-1700
    Abstract: Abstract 1700 Directed signaling between acute myelogenous leukemia (AML) cells and the bone marrow microenvironment plays an important role in leukemia cell survival. How leukemic blasts transform the homeostatic bone marrow microenvironment is not fully explained by known ligand-receptor interactions. Microvesicles (MV) are membrane-enclosed compartments that, depending on cell specific pathways, range in diameter from 50–100 nm (exosomes) to 100–1000 nm (microparticles) and are constitutively released into circulation in many tissues. Biogenesis has been found to be upregulated in a range of cancers. We hypothesized that MV-mediated transfer of signaling components by AML blasts may contribute to intercellular signaling in the leukemic niche. In an initial screen, we characterized MV that we recovered from the culture supernatant of multiple AML-derived cell lines, as well as AML cells from patients. Live-cell imaging of primary AML blasts using the exosomal pathway-specific dye N-Rh-PE revealed that at least a portion of these vesicles could be categorized as exosomes. Consistent with the non-random incorporation of molecular cargo observed in recent studies with solid tumors, we found the protein and RNA content of MV to be distinct from cellular lysates. In a focused, candidate target approach, our experiments showed that MV contain mRNA transcripts encoding the broadly relevant AML prognostic markers FLT3-ITD, NPM1, and IGF-1R. In both cell lines and cultured primary AML cells, insulin receptor (IR) and IGF-1R mRNAs were enriched up to ∼400-fold over GAPDH in MV versus cellular fractions. The IGF-1R receptor tyrosine kinase (RTK) transduces growth and survival signals, and the IGF-I signaling pathway has recently been identified as a potentially important candidate for molecularly targeted drug therapy for AML. Corroborative evidence for a role of MV and IGF-I signaling in shaping the leukemic microenvironment comes from the detection of human IGF-1R mRNA in cDNA prepared from mouse stromal cells (OP9) co-cultured for 48 hours with primary AML cells across a cell impermeable transwell barrier. To determine if the mRNA is transferred in a biologically significant quantity, we developed a plasmid-based quantitative PCR method to measure and compare transferred transcripts to steady state IGF-1R mRNA levels in the AML cell line HL-60. Results indicated that 0.3 HL-60 cellular equivalents of the human IGF-1R transcript were detected per OP9 cell following co-culture with primary AML cells. These data imply that transfer occurs at a level that may be functionally relevant. To further explore the potential role of MV in AML-stroma signaling, experiments are underway with HL-60 cells stably transfected with a pcDNA vector encoding the human IGF1R with a C-terminal FLAG tag. These HL-60:IGF1R-FLAG cells release MV that contain the IGF1R-FLAG transcript and will serve as a model to explore the downstream intracellular RTK signaling. In conclusion, we report for the first time the production of MV containing protein and disease-specific transcripts by AML blast cells, the selective enrichment in MV of disease-relevant transcripts, and direct cell-cell transfer of leukemia cell mRNAs to bystander cells. Our findings underscore the potential role of MV in shaping the AML microenvironment through lateral transfer of RTK mRNA transcripts. We propose a role for MV during disease progression and highlight their potential as highly sensitive, cell-free, and minimally invasive AML biomarkers. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2016
    In:  Blood Vol. 128, No. 22 ( 2016-12-02), p. 888-888
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 888-888
    Abstract: Several groups have shown that leukemic cells create a self-reinforcing bone marrow (BM) niche that functionally impairs normal hematopoietic stem and progenitor cells (HSPC) indirectly through stroma-secreted factors. We recently demonstrated an alternative mechanism whereby extracellular vesicles (EVs) from acute myeloid leukemia (AML) patients and cell lines, but not BM CD34 controls, suppress their clonogenicity through EV trafficking of microRNA that directly downregulate critical transcription factors (c-Myb and HoxA9). Here, we aimed to clarify the fate of residual HSPC in in vivo AML xenografts, as well as ex vivo intrafemural (IF) injection and in vitro exposure of EVs experiments. Among KSL cells we observed a significant increase in the frequency of the long-term hematopoietic stem cell (SLAM, CD150+CD48−) subpopulation, but not the multipotent progenitors even at low levels of AML infiltration or direct IF injection of EVs. The HSPC pool redistribution was accompanied by cell cycle alterations in residual HSPC that showed AML EVs consistently induced quiescence (G0) in KSL (cKit+Sca1+Lin−) HSPC populations. When we assessed their DNA damage, residual HSPC showed a distinct increase in the gH2AX foci relative to control non-engrafted mice as well as the transcriptional upregulation of Rad51 and P21 genes along with gains in phosphorylation of the tumor suppressor p53. Yet, the reprogrammed KSL showed no evidence of apoptosis indicated by the lack of upregulation of the p53 target, Puma, and Annexin V staining, nor evidence of senescence (P16 and Sparc transcripts). To gain additional insight, we performed a tandem mass tag (TMT) proteomic profiling of AML-EV exposed HSPC with or without exposure to EVs derived from AML cells. The results showed significant enrichment of DNA methylation regulatory pathway such as DNMT1, HELLS and UHRF1 as well as inflammatory pathways including IL1b, NOS, CEBPB and NFkB pathway-targets, confirmed by transcriptional profiling of KSL from xeno-transplanted mice. Based on our recent report that miR-1246 is one of the most highly enriched miRNA in AML derived EVs and proceeded to determine its target transcripts using an attenuated RISC complex (RISC-Trap), followed by high-throughput sequencing. Bioinformatics analysis identified a set of 27 miR-1246-specific targets relative to control microRNAs. Strikingly, the target set was selectively enriched for a panel of negative cell-cycle regulator genes (CDK1, CDK7, CDK11, CCNF, HDAC2 and GATA3) as well as the DNA methylation regulators (DNMT1 and HELLS).Collectively, our results demonstrated that residual HSPC in the AML BM are phenotypically reprogrammed and suppressed in their proliferation along with DNA damage accumulation via paracrine EV microRNA trafficking. Our study provides insight into HSPC fates in the AML niche and echoes observations of cell competition, as a mode of non-cell autonomous regulation where p53 activation in the reprogrammed cells leads to a progressive decline in proliferation and fitness. We propose that AML EV trafficking of miR-1246 specifically may contribute to the altered fate of residual HSPC via transcriptional regulation of proliferation-related genes. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Pediatric Dermatology Vol. 37, No. 1 ( 2020-01)
    In: Pediatric Dermatology, Wiley, Vol. 37, No. 1 ( 2020-01)
    Type of Medium: Online Resource
    ISSN: 0736-8046 , 1525-1470
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020833-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2012
    In:  Cerebral Cortex Vol. 22, No. 1 ( 2012-01), p. 201-208
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 22, No. 1 ( 2012-01), p. 201-208
    Type of Medium: Online Resource
    ISSN: 1460-2199 , 1047-3211
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 2 ( 2013-01-15), p. 918-929
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 2 ( 2013-01-15), p. 918-929
    Abstract: Extrinsic signaling cues in the microenvironment of acute myelogenous leukemia (AML) contribute to disease progression and therapy resistance. Yet, it remains unknown how the bone marrow niche in which AML arises is subverted to support leukemic persistence at the expense of homeostatic function. Exosomes are cell membrane–derived vesicles carrying protein and RNA cargoes that have emerged as mediators of cell–cell communication. In this study, we examined the role of exosomes in developing the AML niche of the bone marrow microenvironment, investigating their biogenesis with a focus on RNA trafficking. We found that both primary AML and AML cell lines released exosome-sized vesicles that entered bystander cells. These exosomes were enriched for several coding and noncoding RNAs relevant to AML pathogenesis. Furthermore, their uptake by bone marrow stromal cells altered their secretion of growth factors. Proof-of-concept studies provided additional evidence for the canonical functions of the transferred RNA. Taken together, our findings revealed that AML exosome trafficking alters the proliferative, angiogenic, and migratory responses of cocultured stromal and hematopoietic progenitor cell lines, helping explain how the microenvironmental niche becomes reprogrammed during invasion of the bone marrow by AML. Cancer Res; 73(2); 918–29. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cell Reports Methods, Elsevier BV, Vol. 1, No. 5 ( 2021-09), p. 100080-
    Type of Medium: Online Resource
    ISSN: 2667-2375
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 3091714-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1592-1592
    Abstract: Much of the morbidity and mortality caused by Acute Myeloid Leukemia (AML) is secondary to failure of normal hematopoiesis. Several recent studies indicate that this is not due to "overcrowding" within the bone marrow, suggesting other mechanisms account for the loss of bone marrow regenerative function in the leukemic niche. We recently reported that AML patient leukemia cells produce exosomes – small, membrane-enclosed extracellular vesicles – that are enriched in microRNA (miRNA) content and alter gene expression, cytokine secretion, and homing upon entry into neighboring stromal and progenitor cells. In order to examine the consequences of exosome trafficking in vivo, we conducted a series of experiments in a xenograft model. Here, we show that introduction of either AML cells or isolated AML-derived exosomes into the marrow of immunodeficient mice causes suppression of marrow hematopoietic stem and progenitor cell (HSPC) clonogenicity and a dramatic increase in peripheral circulating HSPC that coincided with a marked decrease in expression of Scf and Cxcl12 in murine stromal cells. Hypothesizing that transferred miRNA mediates the changes observed in recipient cells, we evaluated the miRNA content of two AML cell lines and their exosomes using microarrays paired with qRT-PCR. These experiments revealed stark differences between the total miRNA produced by AML cells and the selective incorporation of miRNA in exosomes. Combining AML exosome-enriched miRNA identified in our screen with a review of miRNA previously identified as significant in AML biology, we selected a panel of highly enriched miRNA, including miR-155 (100-fold enriched in exosomes) for further study. In order to mechanistically identify the mRNA targets of these miRNA, we used the uniquely powerful RISC-Trap method (Cambronne et al, PNAS, 2012), beginning with miR-155. This assay revealed 131 likely targets of miR-155, a set which we compared with several other target detection methods previously attempted with this miRNA, finding both significant overlap and several promising new putative mRNA targets. Of these 131 RISC-Trap targets, 98 were predicted by one or more of six tested target prediction algorithms (miRWalk). We compared the miR-155 targets identified by RISC-Trap to predicted targets for several other miRNA in the panel selected from our microarray studies, identifying both miRNA potentially responsible for the expression changes seen in stroma as well as several potential targets common to multiple miRNA. Using bioinformatics analysis of direct targets of our miRNA of interest and their common interacting partners, we were able to identify a network of targets and cellular processes regulated by AML exosomes, including regulation of transcription (p53, SOX9, CEBPB) and apoptosis (ESR1, TRAF2, CHEK2). These networks may provide insight into the mechanisms by which AML impairs hematopoiesis, both directly, through effects on HSPC, and indirectly, through effects on stroma. Ongoing RISC-Trap studies of other miRNA provide a forward genetic screen to evaluate the paracrine targets of exosomal miRNA in a mechanistic way, in specific niche cell types. By identifying the wider networks in addition to the individual contributors of exosomal miRNA in the AML microenvironment, we hope to uncover new non-leukemia targeted “niche” therapies to relieve hematopoietic suppression in AML patients. Disclosures Cambronne: Clontech/Takara Bio: commercial licensing of the RISC-trap technology Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 742-742
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 742-742
    Abstract: Small, non-coding micro RNA (miRNA) are recognized for their potent regulatory capacity. Several recent studies indicate the prognostic value of miRNA profiling in acute myelogenous leukemia (AML), although a more mechanistic understanding of the role miRNA play in AML biology is still lacking. We recently demonstrated that patient-derived AML blasts release exosomes (nanometer-size, extracellular vesicles) that traffic a non-random subset of miRNA to stromal bystander cells, eliciting changes in transcriptional activity and growth factor secretion (Huan et al., Cancer Res. 2013). Here we hypothesized that exosome miRNA provide a candidate mechanism for the adaptation of the bone marrow to a specialized leukemic niche. As oxygen levels in the bone marrow are substantially lower than those commonly used in tissue culture, we undertook a systematic study of miRNA incorporation and exosome trafficking in AML under physiological oxygen conditions. In carefully calibrated tissue culture conditions we initially observed an up to 7-fold net increase in exosome number released by Molm14 (Flt3-ITD+ AML cell line) leukemia cells at 1% O2versus 21% O2. Nanoparticle tracking analysis and RNA bioanalyzer tracings suggested that the decreased O2 did not alter vesicle composition, average RNA amount per exosome, or global RNA profiles. Further emphasizing the critical nature of appropriate compartmental oxygenation in exosome trafficking, both murine and human stromal cells demonstrated increased uptake of Molm14 exosomes under hypoxia. Low-oxygen conditions alter transcriptional profiles, phenotypic behavior and drug resistance in AML. Therefore, we next evaluated the miRNA expression of leukemic cells and their incorporation in exosomes at 1% versus 21% O2, utilizing the Affymetrix microarray platform containing 〉 5,000 human (hsa) miRNA probesets, followed by select qRT-PCR validation. Array experiments showed broad differences between cellular and exosomal miRNA and revealed that certain miRNA were selectively regulated in an oxygen-responsive manner. For example, hematopoiesis relevant hsa-miR-124, -146a, and -155 increased an average of 4.6-, 5.5-, and 4.9-fold, respectively, in exosomes from hypoxia-conditioned cells. Intriguingly, several known, non-AML specific, hypoxia-responsive miRNA substantially increased in cells cultured at 1% O2 (e.g. miR-210 by 33-fold), but changed less than 2-fold in exosomes. Several recent reports show that leukemia cells actively convert the bone marrow microenvironment and contribute to the erosion of hematopoiesis by modulating hematopoietic-stromal interactions, in part via decrease in SDF1a, SCF, and Angpt1. We investigated the ability of AML-derived exosomes to regulate these transcripts, and found a 50% decrease in SCF and over 90% decrease in Angpt1 in murine stromal cells after in vitro exposure to leukemia exosomes, again with relatively greater differences for exosomes from hypoxia-conditioned AML cells. These experiments were complemented by observations of altered clonogenicity (CFU-C) of murine lin-negative hematopoietic cells after AML exosome exposure, whereby hypoxia conditioning prompted a decline in colony count to 46% from vesicle-free media baseline, compared with 31% decrease at 21 % O2. Exosomes equilibrate across biological fluids and can be recovered from serum. To translate our observations to an in vivo setting, we developed a xenograft model using Molm14 cells in immune-deficient NSG mice. Early after grafting animals, exosomes could be reproducibly isolated from as little as 20 microL serum and candidate miRNA (hsa-miR-146, -150, 155, 210) were amplified, allowing us to quantitatively track leukemia progression via a unique miRNA signature even before circulating leukemia cells were detectable in the peripheral blood. A comparison of leukemic animals to NSG controls bearing cord blood MNC grafts revealed that changes in circulating miRNA were disease specific and resembled those in the hypoxia setting in vitro. In sum, our work demonstrates that physiologic oxygen levels not only increase AML exosome trafficking between cells, but selectively alter the miRNA profile contained therein. These changes produce phenotypic alterations in stromal and hematopoietic bystander cells that correlate with the functional conversion of the bone marrow to a leukemic niche. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Scientific Reports Vol. 5, No. 1 ( 2015-06-12)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2015-06-12)
    Abstract: Relapse remains the major cause of mortality for patients with Acute Myeloid Leukemia (AML). Improved tracking of minimal residual disease (MRD) holds the promise of timely treatment adjustments to preempt relapse. Current surveillance techniques detect circulating blasts that coincide with advanced disease and poorly reflect MRD during early relapse. Here, we investigate exosomes as a minimally invasive platform for a microRNA (miRNA) biomarker. We identify a set of miRNA enriched in AML exosomes and track levels of circulating exosome miRNA that distinguish leukemic xenografts from both non-engrafted and human CD34+ controls. We develop biostatistical models that reveal circulating exosomal miRNA at low marrow tumor burden and before circulating blasts can be detected. Remarkably, both leukemic blasts and marrow stroma contribute to serum exosome miRNA. We propose development of serum exosome miRNA as a platform for a novel, sensitive compartment biomarker for prospective tracking and early detection of AML recurrence.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...