GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Plant Molecular Biology Vol. 79, No. 3 ( 2012-6), p. 243-258
    In: Plant Molecular Biology, Springer Science and Business Media LLC, Vol. 79, No. 3 ( 2012-6), p. 243-258
    Type of Medium: Online Resource
    ISSN: 0167-4412 , 1573-5028
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 1475712-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Plant, Elsevier BV, Vol. 5, No. 5 ( 2012-09), p. 984-992
    Type of Medium: Online Resource
    ISSN: 1674-2052
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 2393618-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 6 ( 2005-02-08), p. 2221-2226
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 6 ( 2005-02-08), p. 2221-2226
    Abstract: Glucuronoarabinoxylan, xyloglucan, and galactomannan are noncellulosic polysaccharides found in plant cell walls. All consist of β-linked glycan backbones substituted with sugar side chains. Although considerable progress has been made in characterizing the structure of these polysaccharides, little is known about the biosynthetic enzymes that produce them. Cellulose synthase-like ( Csl ) genes are hypothesized to encode Golgi-localized β-glycan synthases that polymerize the backbones of noncellulosic polysaccharides. To investigate this hypothesis, we used heterologous expression in Drosophila Schneider 2 (S2) cells to systematically analyze the functions of the gene products of a group of Csl genes from Arabidopsis and rice ( Oryza sativa L.), including members from five Csl gene families ( CslA, CslC, CslD, CslE , and CslH ). Our analyses indicate that several members of the CslA gene family encode β-mannan synthases. Recombinant CslA proteins produce β-linked mannan polymers when supplied GDP-mannose. The same proteins can produce β-linked glucomannan heteropolymers when supplied both GDP-mannose and GDP-glucose. One CslA protein also produced β-linked glucan polymers when supplied GDP-glucose alone. Heterologous expression studies of additional candidate glycan synthases in insect cells or other systems may help identify other noncellulosic polysaccharide biosynthetic enzymes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 20 ( 2007-05-15), p. 8550-8555
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 20 ( 2007-05-15), p. 8550-8555
    Abstract: Despite the central role of xyloglucan (XyG) in plant cell wall structure and function, important details of its biosynthesis are not understood. To identify the gene(s) responsible for synthesizing the β-1,4 glucan backbone of XyG, we exploited a property of nasturtium ( Tropaeolum majus ) seed development. During the last stages of nasturtium seed maturation, a large amount of XyG is deposited as a reserve polysaccharide. A cDNA library was produced from mRNA isolated during the deposition of XyG, and partial sequences of 10,000 cDNA clones were determined. A single member of the C subfamily from the large family of cellulose synthase-like ( CSL ) genes was found to be overrepresented in the cDNA library. Heterologous expression of this gene in the yeast Pichia pastoris resulted in the production of a β-1,4 glucan, confirming that the CSLC protein has glucan synthase activity. The Arabidopsis CSLC4 gene, which is the gene with the highest sequence similarity to the nasturtium CSL gene, is coordinately expressed with other genes involved in XyG biosynthesis. These and other observations provide a compelling case that the CSLC gene family encode proteins that synthesize the XyG backbone.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Plant Journal, Wiley, Vol. 93, No. 6 ( 2018-03), p. 1062-1075
    Abstract: Mixed‐linkage (1,3;1,4)‐β‐glucan ( MLG ) is a glucose polymer with beneficial effects on human health and high potential for the agricultural industry. MLG is present predominantly in the cell wall of grasses and is synthesized by cellulose synthase‐like F or H families of proteins, with CSLF 6 being the best‐characterized MLG synthase. Although the function of this enzyme in MLG production has been established, the site of MLG synthesis in the cell is debated. It has been proposed that MLG is synthesized at the plasma membrane, as occurs for cellulose and callose; in contrast, it has also been proposed that MLG is synthesized in the Golgi apparatus, as occurs for other matrix polysaccharides of the cell wall. Testing these conflicting possibilities is fundamentally important in the general understanding of the biosynthesis of the plant cell wall. Using immuno‐localization analyses with MLG ‐specific antibody in Brachypodium and in barley, we found MLG present in the Golgi, in post‐Golgi structures and in the cell wall. Accordingly, analyses of a functional fluorescent protein fusion of CSLF 6 stably expressed in Brachypodium demonstrated that the enzyme is localized in the Golgi. We also established that overproduction of MLG causes developmental and growth defects in Brachypodium as also occur in barley. Our results indicated that MLG production occurs in the Golgi similarly to other cell wall matrix polysaccharides, and supports the broadly applicable model in grasses that tight mechanisms control optimal MLG accumulation in the cell wall during development and growth. This work addresses the fundamental question of where mixed linkage (1,3;1,4)‐β‐glucan (MLG) is synthesized in plant cells. By analyzing the subcellular localization of MLG and MLG synthase in an endogenous system, we demonstrated that MLG synthesis occurs at the Golgi in Brachypodium and barley. A growth inhibition due to overproduced MLG in Brachypodium supports the general applicability of the model that a tight control of the cell wall polysaccharides accumulation is needed to maintain growth homeostasis during development.
    Type of Medium: Online Resource
    ISSN: 0960-7412 , 1365-313X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020961-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2001
    In:  Plant Physiology Vol. 127, No. 4 ( 2001-12-01), p. 1595-1606
    In: Plant Physiology, Oxford University Press (OUP), Vol. 127, No. 4 ( 2001-12-01), p. 1595-1606
    Abstract: To understand primary cell wall assembly in Arabidopsis, we have focused on identifying and characterizing enzymes involved in xyloglucan biosynthesis. Nine genes (AtFUT2–10) were identified that share between 47% and 62% amino acid similarity with the xyloglucan-specific fucosyltransferase AtFUT1. Reverse transcriptase-PCR analysis indicates that all these genes are expressed. Bioinformatic analysis predicts that these family members are fucosyltransferases, and we first hypothesized that some may also be involved in xyloglucan biosynthesis. AtFUT3,AtFUT4, and AtFUT5 were expressed in tobacco (Nicotiana tabacum L. cv BY2) suspension culture cells, and the resulting proteins did not transfer fucose (Fuc) from GDP-Fuc to tamarind xyloglucan. AtFUT3, AtFUT4, and AtFUT5 were overexpressed in Arabidopsis plants. Leaves of plants overexpressing AtFUT4 or AtFUT5 contained more Fuc than wild-type plants. Stems of plants overexpressing AtFUT4 or AtFUT5 contained more xylose, less arabinose, and less galactose than wild-type plants. We suggest that the AtFUT family is likely to include fucosyltransferases important for the synthesis of wall carbohydrates. A targeted analysis of isolated cell wall matrix components from plants altered in expression of these proteins will help determine their specificity and biological function.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2001
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...