GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6614 ( 2022-09-30)
    Abstract: The Perseverance rover landed in Jezero crater on Mars on 18 February 2021 with three scientific objectives: to explore the geologic setting of the crater, to identify ancient habitable environments and assess the possibility of past martian life, and to collect samples for potential transport to Earth for analysis in laboratories. In the 290 martian days (sols) after landing, Perseverance explored rocks of the Jezero crater floor. RATIONALE Jezero, a 45-km-diameter crater, was selected for investigation by Perseverance because orbital observations had shown that it previously contained an open-system lake, prior to ~3.5 billion years ago. Major climate change then left Mars in its current cold and dry state. On Earth, broadly similar environments of similar age to Jezero contain evidence of microbial life. Jezero crater contains a well-preserved delta, identified as a target for astrobiological investigation by the rover. Perseverance landed ~2 km away from the delta, on rocks of the crater floor. Previously proposed origins for these rocks have ranged from lake (or river) sediments to lava flows. Olivine-rich rocks identified on the crater floor, as well as in the area surrounding Jezero, have previously been attributed to a widely distributed impact melt or volcanic deposit, variably altered to carbonate. We used Perseverance to investigate the origin of the crater floor rocks and to acquire samples of them. RESULTS The Jezero crater floor consists of two geologic units: the informally named Máaz formation covers much of the crater floor and surrounds the other unit, which is informally named the Séítah formation. Máaz rocks display a range of morphologies: structureless boulders, flagstone-like outcrops, and ridges that are several meters high. The ridges expose prominent layers, ranging in thickness from a few centimeters to a few tens of centimeters. Rocks of Séítah are often tabular and strongly layered, with layer thicknesses ranging from centimeters to meters. Máaz and Séítah rocks display no outcrop or grain-scale evidence for transport by wind or water. Perseverance observations show that the Máaz rocks consist of 0.5- to 1-mm interlocking crystals of pyroxene and plagioclase. Combined with bulk chemical composition measurements, this suggests Máaz is an igneous unit that cooled slowly. In contrast, most Séítah rocks are very rich in magnesium and are dominated by densely packed 2- to 3-mm-diameter crystals of olivine, surrounded by pyroxene. These properties indicate settling and accumulation of olivine near the base of a thick magma body, such as an intrusion, lava lake, or thick lava flow. Ground-penetrating radar indicates that Séítah rocks dip beneath the Máaz formation. We hypothesize that Máaz could be the magmatic complement to the Séítah olivine-rich rocks or, alternatively, Máaz could be a series of basaltic lavas that flowed over and around the older Séítah formation. The olivines in the Séítah formation are rimmed with magnesium-iron carbonate, likely produced by interaction with CO 2 -rich water. Máaz formation rocks contain an aqueously deposited iron oxide or iron silicate alteration product. Both units commonly contain patches of bright-white salts, including sodium perchlorate and various sulfate minerals. Although both rock units have been altered by water, preservation of the original igneous minerals and the absence of aluminous clay minerals indicate that the alteration occurred under low water/rock ratio and that there was little loss of soluble species to the surroundings. It remains unclear when these aqueous processes occurred and whether they relate to the lake that once filled Jezero. The exposure of the olivine-rich Séítah rocks at the surface, the absence of lake or river sediment in the exploration area, and several nearby erosional remnant hills of delta sediment indicate that substantial crater floor erosion occurred after formation of these igneous units. Samples of both of these geologic units were collected as drill cores. The drill cores were stored in ultraclean sample tubes, for potential transport to Earth by future missions in the early 2030s. CONCLUSION The floor of Jezero crater explored by Perseverance consists of two distinct igneous units that have both experienced reactions with liquid water. Multiple rock cores were collected from these units for potential transport to Earth and analysis in terrestrial laboratories. Sample collection by Perseverance on Mars. This image mosaic was acquired by the WATSON camera on the rover’s robot arm. Rock cores were drilled from the two holes (arrow) in an igneous rock of the Máaz formation. The 6-cm-long, 1.3-cm-diameter cores were sealed into individual sample tubes and are now stored inside the rover.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2013
    In:  Science Vol. 341, No. 6153 ( 2013-09-27)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 341, No. 6153 ( 2013-09-27)
    Abstract: The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Vol. 605, No. 7911 ( 2022-05-26), p. 653-658
    In: Nature, Springer Science and Business Media LLC, Vol. 605, No. 7911 ( 2022-05-26), p. 653-658
    Abstract: Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat 1 , (2) the speed of sound varies at the surface with frequency 2,3 and (3) high-frequency waves are strongly attenuated with distance in CO 2 (refs.  2–4 ). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s −1 apart below and above 240 Hz, a unique characteristic of low-pressure CO 2 -dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO 2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus. 
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Vol. 608, No. 7923 ( 2022-08-18), p. E26-E26
    In: Nature, Springer Science and Business Media LLC, Vol. 608, No. 7923 ( 2022-08-18), p. E26-E26
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6614 ( 2022-09-30), p. 1513-1519
    Abstract: X-ray fluorescence measurements of rocks on the floor of Jezero crater on Mars show that they formed from a thick magma.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 343, No. 6169 ( 2014-01-24)
    Abstract: Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H 2 O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2014
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 341, No. 6153 ( 2013-09-27)
    Abstract: The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe 3+ - and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 341, No. 6153 ( 2013-09-27)
    Abstract: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand 〈 150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6568 ( 2021-11-05), p. 711-717
    Abstract: Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2014
    In:  Science Vol. 343, No. 6169 ( 2014-01-24)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 343, No. 6169 ( 2014-01-24)
    Abstract: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2014
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...