GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (15)
  • Wendtner, Clemens-Martin  (15)
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1947-1947
    Abstract: Background: CLL patients frequently suffer relapse after an initially successful chemotherapy. This distinct resistance towards chemotherapy is thought to be caused by microenvironmental stimulation. Within the tumor microenvironment (TME) cells are not only stimulated by well-known external stimuli like CD40 ligand (CD40L) or activation of the B cell receptor (BCR), but are also exposed to hypoxia, which was found in the bone marrow and lymphatic tissue. Despite the known importance of hypoxia in solid tumors, its impact on survival and treatment response in CLL is still poorly understood. Methods: We have established a novel in vitro model for the CLL microenvironment, which considers both the external stimulation by CD40L and the hypoxic oxygen levels (1% O2). Treatment efficacy of different drugs in normoxia (21% O2) and hypoxia were determined by AnnexinV/7-AAD staining and subsequent FACS analysis. The underlying molecular mechanisms were analyzed via qRT-PCR and immunoblot. Furthermore B-cell lines Raji, Ramos and Mec-1 were continuously exposed to increasing concentrations of fludarabine or the BH3 mimetic ABT-737. After establishment of resistance the molecular adaptation was assessed and correlated to the changes induced by hypoxia. Results: Hypoxia is known to protect solid cancers from chemotherapy. In our model we made similar observations for CLL, since sensitivity to the classical DNA-targeting drugs fludarabine and bendamustine was reduced under hypoxic conditions. Interestingly, the tyrosine kinase inhibitor ibrutinib did not benefit from hypoxia either. However, this resistance was overcome by the mitochondria-targeting BH3 mimetics ABT-199 and ABT-737, whose effect was pronounced under hypoxia. We reveal that this effect was caused by an uncoupling of major signaling pathways. Under hypoxic conditions the activity of Akt, ERK1/2 and NFκB was reduced, while p38 MAPK became hyperphosphorylated. Phospho-p38 (pp38) downregulated Mcl-1 levels, which are the main regulator of sensitivity towards BH3 mimetics. Despite the known heterogeneity in between CLL patients this effect was found in most samples analyzed. The functional importance was underlined by the observation that pharmacological inhibition of p38 MAPK could reconstitute Mcl-1 levels and thereby resistance in hypoxia. The relevance of the pp38-Mcl-1 axis for ABT efficacy was emphasized by findings in B-cell lines with acquired resistance. Each ABT-resistant clone of the three tested cell lines induced p38 activity and decreased Mcl-1 levels. In contrast, in the fludarabine-resistant clones the pp38-Mcl-1 axis was not altered. Conclusion: These are the first experiments providing evidence that hypoxia has a crucial impact on survival and response to chemotherapy in CLL. We show that hypoxia renders CLL cells resistant to classical DNA-targeting agents, while the small molecules ABT-199 and ABT-737, which specifically target mitochondria, efficiently eradicate CLL cells within the microenvironment. Furthermore, we identified the pp38-Mcl-1 axis to be a major determinant of sensitivity to these BH3 mimetics, which warrants further evaluation of p38 as a novel biomarker for prediction of sensitivity to BH3 mimetics. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 120, No. 19 ( 2012-11-08), p. 3978-3985
    Abstract: Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L–stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1953-1953
    Abstract: Introduction: Resistance towards CD95-mediated apoptosis is a hallmark of many different malignancies, like it is known from primary chronic lymphocytic leukemia (CLL) cells. Moreover, apoptosis mediated through CD95 is an essential mechanism to eliminate e.g. auto-reactive or virally infected cells. However, its mode of action is still not fully understood. Recently, it could be shown that palmitoylation of CD95 can influence its signaling properties. Nevertheless, the role and regulation of palmitoylated CD95 still needs to be determined. Methods and results: Previously, we could show that miR-138 and -424 are down-regulated in CLL cells. By applying luciferase reporter assays, mutations of the binding sites qRT-PCR and immunoblots after transfection of both miRs, we identified two new target genes, namely acyl protein thioesterase (APT) 1 and 2, which are under control of both miRs and thereby are significantly over-expressed in CLL cells. Interestingly, our data reveal that expression of APTs is already controlled by miRs on mRNA level. This way APT1 is regulated by miR-138 and expression of APT2 is controlled by miR-424. So far, APTs are the only enzymes known to promote de-palmitoylation. Indeed, membrane proteins are significantly less palmitoylated in CLL cells compared to normal B cells as we determined by click-chemistry, which is a non-radioactive method to determine palmitoylated proteins. Importantly, via acyl-biotin exchange assays with subsequent immunoprecipitation of CD95 and fluorescence lifetime imaging microscopy (FLIM) to Foerster resonance energy transfer (FRET) in living cells we identified APTs to directly interact with CD95 to promote de-palmitoylation, thus impairing apoptosis mediated through CD95. As proof of concept APTs were inhibited specifically by siRNAs, miRs-138/-424 or our pharmacological inhibitor Palmostatin B. Thereby we could restore CD95-mediated apoptosis in CLL cells and other cancers, pointing to a central regulatory role of APTs in CD95 apoptosis. Conclusion: The identification of the de-palmitoylation reaction of CD95 by APTs as a miRNA target provides a novel molecular mechanism how malignant cells escape from CD95-mediated apoptosis. Here, we introduce palmitoylation as a novel post-translational modification in CLL. In light of global palmitoylome studies, which show that potentially palmitoylated proteins are involved in all central cellular processes, such as protein transport, survival, migration, apoptosis and B-cell receptor signaling, this emphasizes the importance of palmitoylation and might put it on par with modifications like phosphorylation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2829-2829
    Abstract: Abstract 2829 Introduction: Post-translational modifications are important fine-tuning elements for controlling protein activity and signaling. Palmitoylation is a common post-translational modification and defined as the addition of palmitic acid to internal cysteins. Interestingly, in contrast to other lipid modifications, it is reversible. Control over the palmitoylation cycle therefore provides indirect control over protein localization and function. While a number of proteins with palmitoyl transferase activity are known, LYPLA1 (lysophospholipase 1) is the only enzyme known to be responsible for the process of depalmitoylation. CLL cells are known to be resistant to TRAIL-mediated apoptosis. While TRAIL-R1 is reported to be palmitoylated, TRAIL-R2 seems to contain a region with basic amino acids in its membrane-proximal cytoplasmatic domain. Some studies showed that palmitoylation is crucial for several steps of death receptor signaling. Therefore, regulation of depalmitoylation by LYPLA1 seems to be an important tool for the regulation of death receptor function. Methods and Results: Global palmitoylation in CLL cells was investigated by screening for all palmitoylated proteins via a click chemistry assay. There, cells were metabolically labeled, coupled to a specific reporter group and then analyzed by in-gel fluorescence. Comparison of healthy B cells, healthy PBMCs and CLL cells revealed a significant difference in global palmitoylation (+38.5 % in B cells, n=6, p 〈 0.001; +57.8 % in healthy PBMCs, n=6, p 〈 0.001 compared to CLL cells, n=10). We identified LYPLA1 as overexpressed in CLL compared to healthy controls on both protein and mRNA level. We generated a potent LYPLA1 inhibitor. We could show, that inhibition of LYPLA1 led to a significant increase of the overall protein palmitoylation level in CLL cells (+24.7 % n=6, p=0.0118). Ours and other groups have shown, that treatment of cancer cells with TRAIL and X-linked inhibitor of apoptosis protein (XIAP)-inhibition lead to apoptosis in otherwise TRAIL resistant CLL cells. Since death receptors might be palmitoylated, we extended these studies. Treatment of CLL cells with TRAIL, XIAP- and LYPLA1-inhibition led to significantly increased apoptosis compared to TRAIL treatment and XIAP-inhibition alone (+43.2 %, n=12, p=0.0089). Palmitoylation of death receptors was investigated with the help of acyl-biotin exchange chemistry. We could show that palmitoylation of TRAIL-R1 was significantly increased after LYPLA1-inhibiton (+58.7 %, n=3, p=0.0169). It could be demonstrated, that inhibition of LYPLA1 in combination with death receptor stimulation increased the amount of activated caspase-8 in comparison to solely TRAIL and DMSO treated cells (+41.8 %, n=3, p=0.0199), indicating that palmitoylation plays a crucial role in apoptotic signaling far from XIAP. In addition to that, we could show that inhibition of depalmitoylation of TRAIL-R1 led to more death receptor located to lipid rafts. To understand how LYPLA1 is regulated, we investigated two highly conserved miRNAs which were predicted as key regulators of LYPLA1 and which are significantly downregulated in CLL. Indeed, luciferase assays revealed that both miRNAs were able to downregulate LYPLA1 expression. Conclusion: We show for the first time, that LYPLA1 is a central enzyme which regulates the apoptotic signaling of TRAIL. Furthermore, we identified LYPLA1 to be regulated by miRNAs, which are deregulated in CLL. These novel findings allow speculation, that LYPLA1 inhibitors could be used for the treatment of CLL. Future experiments should therefore aim at investigating the LYPLA1 signaling pathway as a potential target for CLL/ cancer therapy. L.P.F. and V.F. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 695-695
    Abstract: Abstract 695 We recently identified the transmembrane protein TOSO to be significantly over-expressed in chronic lymphocytic leukemia (CLL) compared to other B-cell lymphomas or healthy B-cells and T-cells. TOSO was initially characterized as inhibitor of Fas-mediator of apoptosis; however, it could be demonstrated to be the receptor for the IgM-specific Fc-domain in immune cells. TOSO is the only Fcμ receptor expressed on B-cells and is solely expressed in the lymphoid compartment. However, little is known on its regulation and the molecular background of over-expression in CLL. We investigated TOSO expression on mRNA and protein level in freshly isolated primary CLL cells (n=10) and healthy B-cells (n=4) after single treatment for 24 hours with a comprehensive panel of different cytokines or stimuli (interleukin (IL)-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-15, interferon (IFN)-γ, transforming growth factor (TGF)-ß, tumor necrosis factor (TNF)-α, lipopolysaccharide, CpG, CD40-ligand (CD40L) and B-cell receptor (BCR)) being involved in B- and T-cell interplay, by qRT-PCR, western blotting and flow cytometry. Furthermore, we determined the impact of nurse-like cells (NLC) to TOSO expression and co-incubated primary CLL cells for up to 14 days with NLCs. To better understand the intracellular regulation of TOSO, we inhibited BCR and/or CD40L pathways, which were shown by us to be either stimulatory (BCR) or inhibitory (CD40L) in regard to TOSO expression. Since expression might be finally also controlled on epigenetic level, we determined the methylation status of the putative TOSO promoter in 64 CLL samples and 10 healthy B-cells samples. Quantitative DNA methylation analysis was conducted using the EpiTyper application by Sequenom (San Diego, CA, USA). Our experiments reveal novel extra- and intracellular stimuli regulating TOSO expression. We identified CD40L, IL-4 and CpGs to have strong inhibitory effects on TOSO expression (P 〈 0.001) in primary CLL cells and healthy B-cells. In contrast, we identified NLCs (MFIR 15,8 vs. 25,8; P=0.049; n=4) and BCR cross-linking to induce TOSO expression on the cell surface of CLL cells. Based on extracellular stimuli, we were able to hypothesize on shared downstream pathways in order to identify the key regulatory factors and transcription factors controlling TOSO expression. By using a panel of inhibitors in BCR and CD40L downstream signaling, NF-kappa B was shown to have the strongest effect on TOSO expression (P=0,0294). Applying the I-kappa B kinase (IKK) inhibitor Wedelolactone at non-toxic concentrations (10μM), TOSO expression was profoundly suppressed after 24 hours. Regarding epigenetic alterations, our analysis from genome-wide screening experiments in CLL patients compared to healthy B-cells did reveal significant aberrant DNA de-methylation events in the TOSO promoter-associated CpG island (P 〈 0.001). In conclusion, we revealed IL-4, CpG and CD40L as BCR stimulus and NLCs as the key components in regulation of TOSO in the CLL cell microenvironment. Furthermore, over-expression of TOSO in CLL cells compared to normal B-cells could be demonstrated being associated with epigenetic changes at its promoter. We identified TOSO as a novel NF-kappa B regulated target gene. In ongoing studies we elucidate whether NF-kappa B acts directly or in-directly on TOSO expression. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3905-3905
    Abstract: Abstract 3905 Background: Apoptosis resistance of chronic lymphocytic leukemia (CLL) cells is mediated by several pro-survival stimuli. In particular, engagement of the B-cell receptor (BCR), CD40-CD40 ligand (CD40L) interaction or stimulation by interleukin-(IL)-4 were identified as major factors to regulate chemoresistance. Sphingolipids are known to be involved in several metabolic pathways involved in chemoresitance. Therefore, we focused on ceramide as pro-apoptotic molecule and its counterpart glucosylceramide, which rather contributes to proliferation and survival. Methods and Results: Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of pro-apoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared to untreated controls (p=0.0258, p=0.0478, p=0.0114). Anti-apoptotic glucosylceramide levels were significantly increased after BCR cross-linking (p=0.0435) while other stimuli caused no relevant change in glucosylceramide expression. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via the enzyme UDP-glucose ceramide glucosyltransferase (UGCG) (p=0.0001). Besides specific UGCG inhibitors, we could show for the first time that IgM-mediated UGCG expression was significantly inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which were able to revert IgM-induced apoptosis resistance of CLL cells. Recently published data revealed sphingolipids to be essential for mediation of apoptosis via mitochondria. Therefore, we chose ABT-737 – a well-known and also mitochondria-targeting drug – as candidate partner for PI3Kδ and BTK inhibition. When combining each tyrosine kinase inhibitor with ABT-737, a synergistic apoptotic effect could be documented, even under protection by BCR stimulation. Conclusion: In summary, we could demonstrate that sphingolipids are critically involved in CLL pathogenesis. UGCG could be identified as drugable target by the novel kinase inhibitors CAL-101 and PCI-32765 resulting in even synergistic apoptosis following additional application of ABT-737. Sphingolipids seem to offer further targets providing novel treatment options in CLL. C.M.W. and L.P.F. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3597-3597
    Abstract: Abstract 3597 Introduction: The microenvironment and especially the antigenic stimulation of the B-cell receptor on the surface of the malignant cell play a crucial role in the pathogenesis of chronic lymphocytic leukemia (CLL). Aberrant Nuclear Factor kappa B (NFκB) activity is another major hallmark of B-cell malignancies as well as of CLL. NFκB-dependent genes are involved in anti-apoptotic regulation, cell proliferation and metastasis and are responsible for survival and proliferation of tumors. However, the mechanisms of NFκB over-expression in CLL still remain to be elucidated. Prior studies revealed that cylindromatosis (CYLD) function might be of special interest in CLL since it inhibits signaling via TRAF2 and c-IAP1/2, which are known to be over-expressed in CLL. CYLD inactivation might therefore result in sustained NFκB signaling. The enzyme CYLD, a tumor suppressor that functions as a deubiquitinase, plays a role in other physiological aspects such as cell cycle response, inflammatory and immune processes. Moreover, it could be shown that impaired CYLD activity leads to increased NFκB activity in multiple myeloma cells demonstrating the negative regulatory function of CYLD regarding NFκB. Aside from CYLD, which is constitutively active preventing uncontrolled transcription factor activation, the enzyme A20, a key player in negative feedback loop regulation of NFκB, operates via induction, supposing that both enzymes might proceed at different phases of NFκB signaling. A20, also known as tumor necrosis factor alpha-induced protein 3 (TNFAIP3), acts as an ubiquitin-editing enzyme. Its inactivation is involved in immunopathologies (e.g. Crohn's disease, rheumatoid arthritis, systemic lupus erythematodes, psoriasis and type 1 diabetes mellitus) and in tumorigenesis. Frequent mutations in the A20 locus – leading to sustained NFκB activity – could be shown to play a dominant role in development of different B-cell malignancies. Experimental design and results: Based on genome-wide gene expression profiling analysis of CLL samples (n=8) compared to healthy donor B-cells (n=5), CYLD is expressed and its expression was reduced following B-cell receptor cross-linking (24 hours) (p=0,0036) contrary to A20 that could be induced after receptor stimulation (p=0,044). These results underline the role of B-cell receptor signaling in survival regulation of CLL cells and also its in-direct influence on NFκB activity. Recently, our report revealed by methylation analysis and additional sequence analysis that the A20 region neither contains any methylation (64 CLL patients versus 10 healthy donors) nor mutation (55 CLL patients with sequence analysis of exons 2–9 of the tnfaip3 gene) contrary to reports from other B-cell malignancies. Moreover, A20 expression could be confirmed by immunoblotting showing comparable results to healthy B-cells. In order to check if such alterations in the enzyme CYLD might occur in CLL leading to sustained activity of NFκB similar to other B-cell entities, we performed analysis of the methylation status of the promoter region of CYLD in 64 CLL patients compared to 10 DNAs of CD19-selected B-cells from healthy donors. Epigenetic alterations of the CYLD promoter could not be identified. Conclusions: Here we present the first report of epigenetic and mRNA expression analysis concerning the deubiquitinase CYLD in CLL. We identified that CYLD as well as A20 are regulated by B-cell receptor signaling. The opposed expression of CYLD and A20 after stimulation of the receptor might contribute to an almost balanced and well-adjusted NFκB activity. Our results of lacking epigenetic alteration in both proteins (A20 and CYLD) and absence of mutations in A20 indicate that malignant development in CLL differs from most of other B-cell malignancies, which show frequent inactivation of either CYLD or A20. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3918-3918
    Abstract: Abstract 3918 Background: CLL cells circulating in the peripheral blood are sensitive to therapy while malignant cells residing in the microenvironment survive and are the source of relapse. One of the strongest microenvironmental stimuli is CD40 ligand (CD40L)-CD40 interaction, which induces proliferative/anti-apoptotic genes in CLL cells, protecting them from apoptosis and many cytotoxic drugs. Despite the evident importance of CD40 activation further stimuli have to be considered, especially hypoxia. Lymph nodes, particularly those being infiltrated by malignant cells, show a low oxygen tension ( 〈 1%). Prior CLL investigations never took this important factor into account, hence the impact of hypoxia on cell survival and drug-resistance is still unrevealed. Methods: We have established an in vitro model, which mimics hypoxic conditions and CD40L-CD40 interaction, in order to understand the molecular basis of drug resistance of CLL cells resident in the microenvironment. CLL cells were cultured on CD40L feeder cells and kept up to 96 hours in hypoxia (1% O2) or normoxia (21% O2). We determined how proliferation rates in CLL are affected by these conditions and subsequently applied several drugs to investigate differences in drug efficacy between normoxia and hypoxia. Apoptosis was determined by AnnexinV/7AAD-staining and subsequent flow cytometry. Expression of potential target molecules was determined by qRT-PCR and Western Blotting. Results: Hypoxia is known to protect malignant cells in solid cancers from chemotherapy. We made similar observations, since classical DNA-targeting drugs were inefficient to kill CLL cells under hypoxic conditions. However, we identified ABT-737, which affects mitochondrial integrity, to be even more efficient under hypoxic conditions compared to normoxia. In order to explain this discrepancy we investigated the expression of several mitochondrial localized anti-/proapoptotic genes on RNA and protein level. We show that the de-regulation of BclXL and Mcl-1 under hypoxic conditions is essential for ABT-737 sensitivity. BclXL deregulation depends on a general reduction in protein translation in hypoxic cells. Mcl-1 protein expression differs from its mRNA expression, hence we expected regulation subsequent to protein synthesis. Indeed we could identify an increased activity of the proteasome in hypoxia, as Mcl-1 is a short-lived protein with a rapid proteasomal turnover this is a feasible explanation for the observed downregulation. Interestingly, hypoxia has a great impact on proliferation of primary CLL cells under different stimuli in vitro. Conclusion: These are the first experiments investigating the impact of oxygen tension on survival and response to chemotherapy of CLL cells. We show that hypoxia renders CLL cells resistant to classical DNA-targeting agent Fludarabine and Bendamustine. Furthermore we point out that small molecules like ABT-737, which specifically target mitochondria, might be efficient in targeting CLL cells protected by hypoxia and CD40L-CD40 interaction within the microenvironment. Development of novel in vitro models like ours will help us understand the specific molecular changes induced by microenvironmental stimuli and their impact on drug efficacy. These findings will allow us to identify novel therapeutic targets. M.Hu. and L.P.F. contributed equally to this work Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 125, No. 19 ( 2015-05-07), p. 2948-2957
    Abstract: APTs as miRNA targets provide a novel molecular mechanism for how primary CLL cells escape from CD95-mediated apoptosis. Palmitoylation as a novel posttranslational modification in CLL might also impact on survival signaling, proliferation, and migration.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1375-1375
    Abstract: Abstract 1375 Background: Since aggressive DNA damaging chemotherapy shows suboptimal efficacy in chronic lymphocytic leukemia (CLL), alternative therapeutic approaches are needed. Moreover, there is an essential need to improve specific therapeutic regimes for “non-fit” patients, which cannot receive myeloablative therapies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce tumor-specific apoptosis. However, apoptosis might be inhibited by elevated X-linked inhibitor of apoptosis (XIAP) level, the only cellular protein capable to bind to and effectively inhibit caspases. Use of XIAP-inhibiting compounds might sensitize primary CLL cells towards TRAIL-induced lysis. Experimental design: We compared XIAP protein levels between freshly purified CD5+CD19+ primary CLL cells (n=28) and CD19+ B cells from healthy donors (n=16) by western blotting. In a knockdown approach, specific siRNAs against XIAP were nucleofected to check whether XIAP expression prevents TRAIL-mediated apoptosis in CLL. After proof of concept, we applied the novel small molecule IAP antagonizing compound (IAC), an inhibitor of XIAP, in combination with TRAIL to induce apoptosis in primary CLL cells (n=48). Compound A (CA) was developed based on the crystal structure of four amino acids of SMAC, which enabling SMAC to efficiently bind the BIR3 domain of XIAP. In contrast to the active compound CA, which consists of an amino terminal methyl alanine, the inactive compound CB used in our studies as a negative control has an amino terminal methyl glycine. This specific substitution results in a significant reduction of IAP binding capability of CB as CA has binding affinity to XIAP in the picomolar range and CB is a weak binder with micromolar binding affinity to XIAP. Results: XIAP is significantly higher expressed in primary CLL cells (n=28) compared to healthy B cells (n=16) (P=0.02). Our data obtained by specific knockdown of XIAP via siRNA identified XIAP as the key factor conferring resistance to TRAIL in CLL. Based on these results we used IAC in combination with TRAIL. Combined treatment with both drugs significantly increased apoptosis compared to untreated (P=8.5×10-10), solely IAC (P=4.1×10-12) or TRAIL treated (P=4.8×10-10) CLL cells. As a potent cellular caspase inhibitor, we also examined the involvement of caspases in CA/TRAIL-mediated apoptosis. Not surprisingly, co-application of pan-caspase inhibitor zVAD.fmk inhibited cell death induced by CA/TRAIL underscoring the apoptotic caspase-dependent cytotoxicity of CA/TRAIL treatment in CLL cells. IAC rendered 40 of 48 (83.3%) primary CLL samples susceptible towards TRAIL-mediated apoptosis. Especially cells derived from patients with poor prognosis (ZAP-70+, IGHV unmutated, 17p-) were highly responsive to this drug combination. Furthermore, this study reveals that TRAIL application alone induces apoptosis in poor-prognosis CLL samples (13,8% in ZAP-70+ (n=10) vs. 2,3 in ZAP-70- (n=9); P=0.0008), which correlates with the elevated expression levels of TRAIL-R1 and –R2 on ZAP-70+ CLL cells. To assess whether TRAIL treatment is CLL cell specific, healthy B cells (n=4) were exposed to TRAIL alone or CA(CB)/TRAIL and showed significantly lower susceptibility towards CA/TRAIL administration than CLL cells. Conclusion: XIAP is over-expressed in CLL and displays a suitable target to induce TRAIL-mediated apoptosis. The novel XIAP inhibitor used in our study was able to inhibit XIAP function at a concentration of 0,1μM. CA/TRAIL administration was also shown not to induce apoptosis in healthy donor B cells and might therefore also display an attractive option for “non-fit” CLL patients. Our highly effective XIAP inhibitor CA, in concert with TRAIL, shows potential for treatment of CLL of those cases with poor prognosis and therefore warrants further clinical investigation. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...