GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Scientific Publishers  (1)
  • Wen, Zhi-Hong  (1)
Material
Publisher
  • American Scientific Publishers  (1)
Language
Years
  • 1
    In: Journal of Nanoscience and Nanotechnology, American Scientific Publishers, Vol. 20, No. 8 ( 2020-08-01), p. 5162-5174
    Abstract: This study aimed to develop emulsification assisted with ultrasonic atomization (EUA) to make embolic biodegradable poly(caprolactone) (PCL) spherical-microcarriers with uniform particle size for mass production which was used to cure hepatocellular carcinoma, because this kind of embolic drugs is expensive at the current market due to their complex manufacturing process. The embolic spherical-microcarriers with sustained-releasing th erapeutic agents can shrink an unresectable tumor into a respectable size. Through high frequency vibrating surface on the ultrasonic atomizer nozzle, the thin liquid film for PCL oil-phase solution was broken into the uniform PCL microdroplets (particle sizes are from 20 to 55 μ m) with less medicine loss. To determine the optimal parameters to make PCL microcarriers, the ultrasonic module parameters including the concentration of PCL solution, vibrating amplitude of atomizer, feeding rate of PCL oil-phase solution and collection distance on the particle size of microdroplets were analyzed. Besides, a vertical circulation flow field of aqueous-phase poly(vinyl alcohol) (PVA) solution was created to enhance the separation of the microdroplets and increase the production of the PCL microcarriers, and about 8~11 wt% of PVA solution with high stable dispersion property was used to effectively improve the yield rate of PCL spherical-microcarriers (89.8~98.2 wt%). The final particle size of PCL microcarriers was ca. 5–18 μ m, indicating an about 25–50% volume shrinkage from microdroplets to solid spherical-microcarriers.
    Type of Medium: Online Resource
    ISSN: 1533-4880
    Language: English
    Publisher: American Scientific Publishers
    Publication Date: 2020
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...