GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • Wen, Yuanqiao  (4)
Material
Publisher
  • MDPI AG  (4)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Journal of Marine Science and Engineering Vol. 10, No. 6 ( 2022-06-13), p. 809-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 10, No. 6 ( 2022-06-13), p. 809-
    Abstract: In the field of automatic detection of ship exhaust behavior, a deep learning-based multi-sensor hierarchical detection method for tracking inland river ship chimneys is proposed to locate the ship exhaust behavior detection area quickly and accurately. Firstly, the primary detection uses a target detector based on a convolutional neural network to extract the shipping area in the visible image, and the secondary detection applies the Ostu binarization algorithm and image morphology operation, based on the infrared image and the primary detection results to obtain the chimney target by combining the location and area features; further, the improved DeepSORT algorithm is applied to achieve the ship chimney tracking. The results show that the multi-sensor-based hierarchical detection and tracking method can achieve real-time detection and tracking of ship chimneys, and can provide technical reference for the automatic detection of ship exhaust behavior.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Journal of Marine Science and Engineering Vol. 10, No. 5 ( 2022-05-07), p. 639-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 10, No. 5 ( 2022-05-07), p. 639-
    Abstract: Due to the high error frequency of the existing methods in identifying a ship’s navigational intention, accidents frequently occur at intersections. Therefore, it is urgent to improve the ability to perceive ship intention at intersections. In this paper, we propose an algorithm based on the fusion of image sequence and radar information to identify the navigation intention of ships at intersections. Some existing algorithms generally use the Automatic Identification System (AIS) to identify ship intentions but ignore the problems of AIS delay and data loss, resulting in unsatisfactory effectiveness and accuracy of intention recognition. Firstly, to obtain the relationship between radar and image, a cooperative target composed of a group of concentric circles and a central positioning radar angle reflector is designed. Secondly, the corresponding relationship of radar and image characteristic matrix is obtained after employing the RANSAC method to fit radar and image detection information; then, the homographic matrix is solved to realize radar and image data matching. Thirdly, the YOLOv5 detector is used to track the ship motion in the image sequence. The visual measurement model based on continuous object tracking is established to extract the ship motion parameters. Finally, the motion intention of the ship is predicted by integrating the extracted ship motion features with the position information of the shallow layer using a Bayesian framework. Many experiments on real data sets show that our proposed method is superior to the most advanced method for ship intention identification at intersections.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Applied Sciences Vol. 13, No. 5 ( 2023-03-01), p. 3164-
    In: Applied Sciences, MDPI AG, Vol. 13, No. 5 ( 2023-03-01), p. 3164-
    Abstract: Waterline usually plays as an important visual cue for the autonomous navigation of marine unmanned surface vehicles (USVs) in specific waters. However, the visual complexity of the inland waterline presents a significant challenge for the development of highly efficient computer vision algorithms tailored for waterline detection in a complicated inland water environment that marine USVs face. This paper attempts to find a solution to guarantee the effectiveness of waterline detection for the USVs with a general digital camera patrolling variable inland waters. To this end, a general deep-learning-based paradigm for inland marine USVs, named DeepWL, is proposed, which consists of two cooperative deep models (termed WLdetectNet and WLgenerateNet, respectively). They afford a continuous waterline image-map estimation from a single video stream captured on board. Experimental results demonstrate the effectiveness and superiority of the proposed approach via qualitative and quantitative assessment on the concerned performances. Moreover, due to its own generality, the proposed approach has the potential to be applied to the waterline detection tasks of other water areas such as coastal waters.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Journal of Marine Science and Engineering Vol. 9, No. 6 ( 2021-06-10), p. 645-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 9, No. 6 ( 2021-06-10), p. 645-
    Abstract: Autonomy is the core capability of future systems, and architecture design is one of the critical issues in system development and implementation. To discuss the architecture of autonomous systems in the future, this paper reviews the developing progress of architectures from automation systems to autonomous systems. Firstly, the autonomy and autonomous systems in different fields are summarized. The article classifies and summarizes the architecture of typical automated systems and infer three suggestions for building an autonomous system architecture: extensibility, evolvability, and collaborability. Accordingly, this paper builds an autonomous waterborne transportation system, and the architecture is composed of the object layer, cyberspace layer, cognition layer, and application layer, the proposed suggestions made in the construction of the architecture are reflected in the inter-relationships at all layers. Through the cooperation of four layers, the autonomous waterborne transportation system can autonomously complete the system functions, such as system control and transportation service. In the end, the characteristics of autonomous systems are concluded, from which the future primary research directions and the challenges of autonomous systems are provided.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...