GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 9 ( 2014-09), p. 2590-
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 9 ( 2014-09), p. 2590-
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2013
    In:  Deep Sea Research Part II: Topical Studies in Oceanography Vol. 91 ( 2013-7), p. 71-83
    In: Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier BV, Vol. 91 ( 2013-7), p. 71-83
    Type of Medium: Online Resource
    ISSN: 0967-0645
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1141627-0
    detail.hit.zdb_id: 1500312-7
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Physical Oceanography Vol. 43, No. 8 ( 2013-08), p. 1589-1610
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 43, No. 8 ( 2013-08), p. 1589-1610
    Abstract: This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s −1 ) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m −1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s −1 . Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s −1 .
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 2 ( 2023-02), p. E389-E410
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 2 ( 2023-02), p. E389-E410
    Abstract: The years since 2000 have been a golden age in in situ ocean observing with the proliferation and organization of autonomous platforms such as surface drogued buoys and subsurface Argo profiling floats augmenting ship-based observations. Global time series of mean sea surface temperature and ocean heat content are routinely calculated based on data from these platforms, enhancing our understanding of the ocean’s role in Earth’s climate system. Individual measurements of meteorological, sea surface, and subsurface variables directly improve our understanding of the Earth system, weather forecasting, and climate projections. They also provide the data necessary for validating and calibrating satellite observations. Maintaining this ocean observing system has been a technological, logistical, and funding challenge. The global COVID-19 pandemic, which took hold in 2020, added strain to the maintenance of the observing system. A survey of the contributing components of the observing system illustrates the impacts of the pandemic from January 2020 through December 2021. The pandemic did not reduce the short-term geographic coverage (days to months) capabilities mainly due to the continuation of autonomous platform observations. In contrast, the pandemic caused critical loss to longer-term (years to decades) observations, greatly impairing the monitoring of such crucial variables as ocean carbon and the state of the deep ocean. So, while the observing system has held under the stress of the pandemic, work must be done to restore the interrupted replenishment of the autonomous components and plan for more resilient methods to support components of the system that rely on cruise-based measurements.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C4 ( 1995-04-15), p. 6605-6619
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C4 ( 1995-04-15), p. 6605-6619
    Abstract: The Marine Light‐Mixed Layers (MLML) experiments took place in the subarctic North Atlantic Ocean, approximately 275 miles south of Reykjavik, Iceland, during 1989 and 1991. The 1991 field program took place from April 30 to September 6 and included a central surface mooring to document the temporal evolution of physical, biological, and optical properties. In this paper we describe the physical variability observed at the 1991 mooring site, concentrating on the vertical structure of temperature and velocity in the upper 300 m of the water column and their changes in response to heat and momentum fluxes at the sea surface. The deployment period included the spring transition, when upper ocean re stratification was initiated after deep winter mixing, and the fall transition, when mixed layer deepening began again. The dominant signal in temperature was seasonal variation, with a 6°C increase observed at the sea surface from May to August. Prior to development of the seasonal stratification, a period dominated by near‐surface temperature variability was observed in association with a 15‐day mean flux of only 20 W m −2 into the ocean. Pronounced day/night oscillations of heat flux during this period resulted in alternating development and destruction of stratification and intense diurnal cycling of the mixed layer depth. A qualitative comparison of the observed temperature structure to the prediction of a one‐dimensional mixed layer model showed that local processes dominated during the initiation of restratification and during most of the summer warming period. Nonlocal processes were important after the fall transition.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2005
    In:  Deep Sea Research Part I: Oceanographic Research Papers Vol. 52, No. 5 ( 2005-5), p. 749-765
    In: Deep Sea Research Part I: Oceanographic Research Papers, Elsevier BV, Vol. 52, No. 5 ( 2005-5), p. 749-765
    Type of Medium: Online Resource
    ISSN: 0967-0637
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2005
    detail.hit.zdb_id: 1500309-7
    detail.hit.zdb_id: 1146810-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Atmospheric and Oceanic Technology Vol. 37, No. 4 ( 2020-04), p. 687-703
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 37, No. 4 ( 2020-04), p. 687-703
    Abstract: The comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s −1 . To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  ICES Journal of Marine Science Vol. 72, No. 6 ( 2015-08-01), p. 2021-2028
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 72, No. 6 ( 2015-08-01), p. 2021-2028
    Abstract: We review bio-optical and physical data from three mooring experiments, the Marine Light–Mixed Layers programme in spring 1989 and 1991 in the Iceland Basin (59°N/21°W), and the Forced Upper Ocean Dynamics Experiment in the central Arabian Sea from October 1994 to 1995 (15.5°N/61.5°E). In the Iceland Basin, from mid-April to mid-June in 1989, chlorophyll-a concentrations are sensitive to small changes in stratification, with intermittent increases early in the record. The spring increase occurs after 20 May, coincident with persistent water column stratification. In 1991, the bloom occurs 2 weeks earlier than in 1989, with a background of strong short-term and diurnal variability in mixed layer depth and minimal horizontal advection. In the Arabian Sea, the mixing response to the northeast and southwest monsoons, plus the response to mesoscale eddies, produces four blooms over the annual cycle. The mixed layer depth in the Arabian Sea never exceeds the euphotic zone, allowing interactions between phytoplankton and grazer populations to become important. For all three mooring experiments, change in water column stratification is key in producing phytoplankton blooms.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C2 ( 1996-02-15), p. 3525-3543
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C2 ( 1996-02-15), p. 3525-3543
    Abstract: A cooperative, multiplatform field experiment was conducted in the eastern North Pacific during February and March of 1990 as part of the Surface Waves Processes Program (SWAPP). One of the experimental objectives was to investigate Langmuir circulation so that its role in the evolution of the oceanic surface boundary layer could be better understood. The concurrent use of different observational techniques, ranging from simple surface drifters to complex Doppler sonar systems, resulted in new information about Langmuir circulation structure and variability. Estimates of Langmuir cell spacing indicated that a broad range of scales, from about 2 to 200 m, was excited during periods of strong surface forcing and that the energy containing scales evolved with time. Estimates of cell spacing based on Doppler velocities from a surface‐scanning sonar directed crosswind showed this scale evolution, but estimates based on backscattered intensity did not. This was attributed to the fact that the intensity‐based estimates were only indirectly related to circulation strength. The near‐surface convergent velocities from the sonar were used to form an objective, quantitative measure of the temporal variations in Langmuir circulation strength. As expected, the circulation strength increased dramatically during strong wind events. However, circulation strength and wind stress did not decrease simultaneously, and Langmuir circulation was detectable for up to a day after abrupt reductions in wind stress. Energy from the surface wave field, which decayed more slowly than the wind, was apparently responsible for maintaining the circulation. The variation of circulation strength was found to be better related to ( u * U s ) ½ than to u * , where u * = (τ/ρ) ½ is the friction velocity, τ is the wind stress, and U s is the surface wave Stokes drift. This scaling is consistent with wave‐current interaction theories of Langmuir cell generation.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Oceans Vol. 105, No. C3 ( 2000-03-15), p. 6341-6357
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 105, No. C3 ( 2000-03-15), p. 6341-6357
    Abstract: Surface fluxes in the western equatorial Pacific warm pool region and their influence on sea surface temperature (SST) variability were investigated for the period November 15, 1992, to February 15, 1993, during the Intensive Observing Period of the Coupled Ocean‐Atmosphere Response Experiment (COARE). A blended flux data set was developed using a “reanalysis” of surface meteorology from the European Centre for Medium‐Range Weather Forecasts (ECMWF), turbulent flux components from the COARE bulk flux algorithm, and shortwave radiation and precipitation estimates from satellite remote sensing. Comparison with in situ fluxes from the center of the warm pool showed that the blended fluxes captured variability associated with the intraseasonal oscillation (ISO) while the fluxes produced by ECMWF did not. The influence of surface forcing on SST was assessed by comparing the observed SST tendency to that produced by a one‐dimensional model forced by the blended fluxes. On the ISO timescale, SST changes in a substantial portion of the warm pool were found to be dominated by local surface forcing, although significant contributions from other processes (e.g., horizontal advection) were not ruled out. The results emphasize the fact that high‐quality surface fluxes are essential to developing accurate predictions of SST variability in the warm pool region.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...