GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 1288-1288
    Abstract: Tumor cells co-opt multiple pathways in order to evade attack by infiltrating immune cells. One such mechanism is the upregulation of indole-2,3-dioxygenase (IDO1) and/or tryptophan-2,3-dioxygenase (TDO2), both of which are first-step, rate-limiting enzymes degrading tryptophan to the immunosuppressive metabolites kynurenine (KYN) and kynurenic acid (KA). KYN and KA bind and activate the aryl hydrocarbon receptor (AhR), which is expressed in many cell types and is well known for its immunosuppressive effects. Targeting of the AhR with an inhibitor may therefore provide a novel immunotherapeutic approach for enhancing anti-tumoral immune responses and treating cancer. Here we describe the identification and functional immune characterization of BAY-218, a novel, selective and potent AhR small molecule inhibitor. Mechanistically, BAY-218 inhibited AhR nuclear translocation, dioxin response element (DRE)-luciferase reporter expression and AhR-regulated target gene expression induced by both exogenous and endogenous AhR ligands. In vitro, BAY-218 rescued TNFα production from KA-suppressed LPS-treated primary human monocytes. Furthermore, BAY-218 enhanced T cell cytokine production in a human mixed lymphocyte reaction (MLR) and a mouse antigen-specific bone-marrow-derived dendritic cell (BMDC)-OT-I T cell co-culture. In the MLR, BAY-218 increased anti-PD1 antibody-mediated IL-2 and IFNγ secretion, while an IDO inhibitor did not, indicating that BAY-218 is able to block AhR activation mediated by ligands outside of the IDO-KYN pathway. In vivo, BAY-218 enhanced anti-tumoral immune responses and reduced tumor growth in the syngeneic mouse tumor models CT26 and B16-OVA. FACS analysis of leukocytes infiltrating B16-OVA tumors demonstrated that administration of BAY-218 increased the frequency of tumor-infiltrating CD8+ T cells and NK cells while decreasing GR1+ myeloid cells and CD206+M2 macrophages. Furthermore, BAY-218 enhanced therapeutic efficacy of an anti-PD-L1 antibody in the CT26 model. In summary, AhR inhibition with BAY-218 stimulates pro-inflammatory monocyte and T cell responses in vitro and drives anti-tumor immune responses, resulting in decreased tumor growth, in vivo. Thus, inhibiting AhR represents a novel immunotherapeutic approach for blocking AhR-mediated tumor-associated immunosuppression. Citation Format: Ilona Gutcher, Christina Kober, Lars Roese, Julian Roewe, Norbert Schmees, Florian Prinz, Matyas Gorjanacz, Ulrike Roehn, Benjamin Bader, Horst Irlbacher, Detlef Stoeckigt, Rafael Carretero, Katharina Sahm, Iris Oezen, Hilmar Weinmann, Ingo V. Hartung, Bertolt Kreft, Michael Platten. Blocking tumor-associated immune suppression with BAY-218, a novel, selective aryl hydrocarbon receptor (AhR) inhibitor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1288.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 5084-5084
    Abstract: ATAD2 (ATPase family AAA-domain containing protein 2, also called ANCCA) is an epigenetic regulator that binds to chromatin through its bromodomain (BD), a motif specialized for acetyl-lysine recognition. ATAD2 directly associates with multiple transcription factors such as ERα, AR, E2F, and Myc; hence, ATAD2 has been proposed to act as a co-factor for oncogenic transcription factors. Furthermore, we have recently reported a novel role for ATAD2 during DNA replication, uncovering interactions between ATAD2 and histone acetylation marks on newly synthesized histone H4. High expression of ATAD2 strongly correlates with poor patient prognosis in multiple tumor types, including gastric, endometrial, hepatocellular, ovarian, breast and lung cancers. However, the exact function of ATAD2 in these tumor types remains unclear. A more thorough validation of ATAD2 as a therapeutic target is hampered by the lack of isoform-selective, potent and cellularly active ATAD2 inhibitors. A systematic assessment of crystal structures of BD-containing protein family predicted that development of selective inhibitors of ATAD2 would be challenging. In line with this prediction, only limited progress in developing lead compounds targeting ATAD2 has been reported so far. A few notable exceptions relied on fragments as starting points, however, their weak potency, insufficient selectivity against other BDs, permeability limitations or modest cellular activity have curbed their further development towards drug candidates. Here we embarked on a novel strategy to identify ATAD2 inhibitors: 11 different DNA-encoded libraries adding up to 67 billion unique encoded compounds were combined and incubated with ATAD2 BD followed by two rounds of affinity-mediated selection. This approach provided with several series of binders, for which specific target engagement of their SMOL moiety upon off-DNA synthesis was confirmed in biochemical and biophysical assays. Several rounds of potency optimization led to the identification of BAY-850, a highly potent and ATAD2 (isoform A) mono-selective inhibitor, which holds an amine substituted 3-(2-furyl)benzamide core. This compound shows - as revealed by size exclusion chromatography and native mass spectrometry - a novel mode of action for a BD inhibitor based on specific target dimerization. In a cellular fluorescence recovery after photobleaching (FRAP) assay BAY-850 displaced wild-type ATAD2 from the chromatin to the same extent as the genetic mutagenesis of ATAD2 BD. In contrast, chemically very similar inactive control compounds showed no major effects on ATAD2 association with the chromatin. These results qualify BAY-850 as the first biologically active ATAD2 isoform A-specific chemical probe, which will enable further elucidation of the cancer biology of this intriguing protein. Citation Format: Amaury E. Fernández-Montalván, Markus Berger, Benno Kuropka, Seong Joo Koo, Volker Badock, Joerg Weiske, Simon J. Holton, Apirat Chaikuad, Laura Díaz-Sáez, James Bennett, Oleg Federov, Kilian Huber, Paolo Centrella, Matthew A. Clark, Christoph E. Dumelin, Eric A. Sigel, Holly S. Soutter, Dawn M. Troast, Ying Zhang, John W. Cuozzo, Anthony D. Keefe, Didier Roche, Vincent Rodeschini, Jan Hübner, Hilmar Weinmann, Ingo V. Hartung, Matyas Gorjanacz. Potent and isoform-selective ATAD2 bromodomain inhibitor with unprecedented chemical structure and mode of action [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5084. doi:10.1158/1538-7445.AM2017-5084
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 5239-5239
    Abstract: Low reproducibility of published target validation studies as well as the frequent failure of genetic knock-down effects to phenocopy those of small molecule inhibitors have been recognized as road blocks for cancer drug discovery. Academic and industrial institutions have started to address these issues by providing access to high quality small molecular probes for novel targets of interest. Here we discuss probe discovery challenges and quality criteria based on the generation of three novel inhibitors for epigenetic targets. ATAD2 (ATPase family AAA-domain containing protein 2) is an epigenetic regulator that binds to chromatin through its bromodomain (BD). ATAD2 has been proposed to act as a co-factor for oncogenic transcription factors such as ERα and Myc. A more thorough validation of ATAD2 as a therapeutic target has been hampered by the lack of appropriate ATAD2 inhibitors. Here we disclose a structurally unprecedented series of ATAD2 BD inhibitors identified from a DNA-encoded library screen. Optimization delivered BAY-850, a highly potent and exceptionally selective ATAD2 BD inhibitor, which fully recapitulates effects seen by genetic mutagenesis studies in a cellular assay. The three BD and PHD-finger (BRPF) family members are found in histone acetyltransferase complexes. Whereas bromodomain inhibitors with dual activity against BRPF1 and 2 have been described before, we now disclose BAY-299, the first nanomolar inhibitor of the BRPF2 BD with high selectivity against its paralogs. Isoform selectivity was confirmed in cellular protein-protein interaction assays and rationalized based on X-Ray structures. BAY-598, a highly selective, cellularly active and orally bioavailable inhibitor of the protein lysine methyl transferase SMYD2, had been disclosed previously (Stresemann et al., AACR 2015). Development of BAY-598 allowed the identification of new methylation targets of SMYD2 as well as a proposed role of SMYD2 in pancreatic cancer. These results support further development of small molecule inhibitors as research tools to probe the functional role of novel epigenetic targets and underscore the power of open innovation for advancing our understanding of cancer target biology. Citation Format: Ingo V. Hartung, Cheryl Arrowsmith, Volker Badock, Naomi Barak, Markus Berger, Peter J. Brown, Clara D. Christ, Erik Eggert, Ursula Egner, Oleg Fedorov, Amaury E. Fernandez-Montalvan, Matyas Gorjanacz, Andrea Haegebarth, Bernard Haendler, Roman C. Hillig, Simon H. Holton, Kilian V. Huber, Seong J. Koo, Antonius ter Laak, Susanne Mueller, Anke Mueller-Fahrnow, Cora Scholten, Stephan Siegel, Timo Stellfeld, Detlef Stoeckigt, Carlo Stresemann, Masoud Vedadi, Joerg Weiske, Hilmar Weinmann. Probing the cancer epigenome: empowering target validation by open innovation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5239. doi:10.1158/1538-7445.AM2017-5239
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: ACS Chemical Biology, American Chemical Society (ACS), Vol. 12, No. 11 ( 2017-11-17), p. 2730-2736
    Type of Medium: Online Resource
    ISSN: 1554-8929 , 1554-8937
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2017
    detail.hit.zdb_id: 2221735-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...