GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 4 ( 2020-11), p. 20-31
    Abstract: We evaluated circulating tumor DNA (ctDNA) for detecting tumor burden in melanoma and examined whether early changes in the number of ctDNA copies predict response to treatment. PATIENTS AND METHODS We included 12 patients with stage III and 50 patients with stage IV melanoma with BRAF exon 15 or NRAS exon 3 mutations in tumor tissue. We used droplet digital polymerase chain reaction to retrospectively analyze serial plasma samples for mutation-positive ctDNA. RESULTS Matched plasma and serum samples were positive for ctDNA, lactate dehydrogenase, and S100 in 113 (45.8%), 108 (43.7%; not significant), and 58 (23.5%; P 〈 .0001) of 247 samples from 50 patients with stage IV melanoma, and in 17 (63%), eight (29.6%; P = .014), and five (18.5%; P 〈 .0001) of 27 samples from 12 patients with stage III melanoma. The number of mutant ctDNA copies correlated with concentrations of lactate dehydrogenase ( r = 0.50) and S100 ( r = 0.64), tumor volume ( r 2 = 0.58), and tumor metabolic activity ( r 2 = 0.83). Within 30 days before surgery, initiation of treatment, or change in treatment, ctDNA, LDH, and S100 were positive in 76.8%, 53.6% ( P = .01), and 46.4% ( P 〈 .001) of patients, respectively. In patients with stage III or IV melanoma, early changes in ctDNA within 1 month after initiation of treatment correctly predicted RECIST response categories in 19 of 20 patients. Detectable ctDNA within 30 days after surgery or initiation of systemic treatment predicted inferior progression-free survival in patients with stage III disease ( P = .018). In patients with stage IV disease, 10 or more copies of ctDNA per mL at first follow-up indicated shorter progression-free survival (3.8 v 9 months; hazard ratio, 4.05; 95% CI, 1.56 to 10.53). CONCLUSION ctDNA indicated active tumor and was an adverse prognostic marker for tumor progression. Dynamic changes in ctDNA allowed prediction of response early after initiation of treatment. These data support the use of ctDNA to guide treatment in melanoma.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2020
    detail.hit.zdb_id: 2964799-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bone Marrow Transplantation, Springer Science and Business Media LLC, Vol. 55, No. 3 ( 2020-3), p. 665-668
    Type of Medium: Online Resource
    ISSN: 0268-3369 , 1476-5365
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 632854-4
    detail.hit.zdb_id: 2004030-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 41, No. 9 ( 2023-03-20), p. 1684-1694
    Abstract: Clinical outcomes of patients with CNS lymphomas (CNSLs) are remarkably heterogeneous, yet identification of patients at high risk for treatment failure is challenging. Furthermore, CNSL diagnosis often remains unconfirmed because of contraindications for invasive stereotactic biopsies. Therefore, improved biomarkers are needed to better stratify patients into risk groups, predict treatment response, and noninvasively identify CNSL. PATIENTS AND METHODS We explored the value of circulating tumor DNA (ctDNA) for early outcome prediction, measurable residual disease monitoring, and surgery-free CNSL identification by applying ultrasensitive targeted next-generation sequencing to a total of 306 tumor, plasma, and CSF specimens from 136 patients with brain cancers, including 92 patients with CNSL. RESULTS Before therapy, ctDNA was detectable in 78% of plasma and 100% of CSF samples. Patients with positive ctDNA in pretreatment plasma had significantly shorter progression-free survival (PFS, P 〈 .0001, log-rank test) and overall survival (OS, P = .0001, log-rank test). In multivariate analyses including established clinical and radiographic risk factors, pretreatment plasma ctDNA concentrations were independently prognostic of clinical outcomes (PFS HR, 1.4; 95% CI, 1.0 to 1.9; P = .03; OS HR, 1.6; 95% CI, 1.1 to 2.2; P = .006). Moreover, measurable residual disease detection by plasma ctDNA monitoring during treatment identified patients with particularly poor prognosis following curative-intent immunochemotherapy (PFS, P = .0002; OS, P = .004, log-rank test). Finally, we developed a proof-of-principle machine learning approach for biopsy-free CNSL identification from ctDNA, showing sensitivities of 59% (CSF) and 25% (plasma) with high positive predictive value. CONCLUSION We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in CNSL. Our findings highlight the role of ctDNA as a noninvasive biomarker and its potential value for personalized risk stratification and treatment guidance in patients with CNSL. [Media: see text]
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2023
    detail.hit.zdb_id: 2005181-5
    detail.hit.zdb_id: 604914-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 6-6
    Abstract: Introduction: Clinical outcomes for patients with central nervous system lymphoma (CNSL) are remarkably heterogeneous, yet identification of patients at high risk for treatment failure remains challenging with existing methods. In addition, diagnosis of CNSL requires invasive neurosurgical biopsies that carry procedural risks and often cannot be performed in frail or elderly patients. Circulating tumor DNA (ctDNA) has shown great potential as a noninvasive biomarker in systemic lymphomas. Yet, previous studies revealed low ctDNA detection rates in blood plasma of CNSL patients. In this study, we utilized ultrasensitive targeted high-throughput sequencing technologies to explore the role of ctDNA for disease classification, MRD detection, and early prediction of clinical outcomes in patients with CNSL. Methods: We applied Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) and Phased Variant Enrichment and Detection Sequencing (PhasED-Seq, Kurtz et al, Nat Biotech 2021) to 85 tumor biopsies, 131 plasma samples, and 62 CSF specimens from 92 CNSL patients and 44 patients with other brain cancers or inflammatory cerebral diseases, targeting 794 distinct genetic regions. Concentrations of ctDNA were correlated with radiological measures of tumor burden and tested for associations with clinical outcomes at distinct clinical time points. We further developed a novel classifier to noninvasively distinguish CNS lymphomas from other CNS tumors based on their mutational landscapes in plasma and CSF, using supervised training of a machine learning approach from tumor whole genome sequencing data and own genotyping analyses, followed by its independent validation. Results: We identified genetic aberrations in 100% of CNSL tumor biopsies (n=63), with a median of 262 mutations per patient. Pretreatment plasma ctDNA was detectable in 78% of plasma samples and in 100% of CSF specimens (Fig. 1a), with ctDNA concentrations ranging from 0.0004 - 5.94% allele frequency (AF, median: 0.01%) in plasma and 0.0049 - 50.47% AF (median: 0.62%) in CSF (Fig. 1b). Compared to ctDNA concentrations in patients with systemic diffuse large B-cell lymphoma (DLBCL, data from Kurtz et al., J Clin Oncol, 2018), plasma ctDNA levels in CNSL were in median more than 200-fold lower (Fig. 1b). We observed a significant correlation of ctDNA concentrations with total radiographic tumor volumes (TRTV) measured by MRI (Fig. 1c,d), but no association with clinical risk scores (i.e., MSKCC score) or concurrent steroid treatment. Assessment of ctDNA at pretreatment time points predicted progression-free survival (PFS) and overall survival (OS), both as continuous and binary variable (Fig. 1e,f). Notably, patients could be stratified into risk groups with particularly favorable or poor prognoses by combining ctDNA and TRTV as pretreatment biomarkers (Fig. 1g). Furthermore, ctDNA positivity during curative-intent induction therapy was significantly associated with clinical outcomes, both PFS and OS (Fig. 1h). Finally, we applied our novel machine learning classifier to 207 specimens from an independent validation cohort of CNSL and Non-CNSL patients. We observed high specificity (100%) and positive predictive value (100%) for noninvasive diagnosis of CNSL, with a sensitivity of 57% for CSF and 21% for plasma, suggesting that a significant subset of CNSL patients might be able to forego invasive surgical biopsies. Conclusions: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in CNSL. Our findings suggest that ctDNA accurately mirrors tumor burden and serves as a valuable clinical biomarker for risk stratification, outcome prediction, and surgery-free lymphoma classification in CNSL. We foresee an important potential future role of ctDNA as a decision-making tool to guide treatment in patients with CNSL. Figure 1 Figure 1. Disclosures Esfahani: Foresight Diagnostics: Current holder of stock options in a privately-held company. Kurtz: Genentech: Consultancy; Roche: Consultancy; Foresight Diagnostics: Consultancy, Current holder of stock options in a privately-held company. Schorb: Riemser Pharma GmbH: Honoraria, Research Funding; Roche: Research Funding; AbbVie: Research Funding. Diehn: BioNTech: Consultancy; RefleXion: Consultancy; Roche: Consultancy; AstraZeneca: Consultancy; Foresight Diagnostics: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; CiberMed: Current holder of stock options in a privately-held company, Patents & Royalties; Illumina: Research Funding; Varian Medical Systems: Research Funding. Alizadeh: Foresight Diagnostics: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Gilead: Consultancy; Roche: Consultancy, Honoraria; Celgene: Consultancy, Research Funding; Janssen Oncology: Honoraria; CAPP Medical: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Forty Seven: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Cibermed: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Bristol Myers Squibb: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Oncology, Wiley, Vol. 16, No. 2 ( 2022-01), p. 527-537
    Abstract: Circulating tumor DNA (ctDNA) has demonstrated great potential as a noninvasive biomarker to assess minimal residual disease (MRD) and profile tumor genotypes in patients with non‐small‐cell lung cancer (NSCLC). However, little is known about its dynamics during and after tumor resection, or its potential for predicting clinical outcomes. Here, we applied a targeted‐capture high‐throughput sequencing approach to profile ctDNA at various disease milestones and assessed its predictive value in patients with early‐stage and locally advanced NSCLC. We prospectively enrolled 33 consecutive patients with stage IA to IIIB NSCLC undergoing curative‐intent tumor resection (median follow‐up: 26.2 months). From 21 patients, we serially collected 96 plasma samples before surgery, during surgery, 1–2 weeks postsurgery, and during follow‐up. Deep next‐generation sequencing using unique molecular identifiers was performed to identify and quantify tumor‐specific mutations in ctDNA. Twelve patients (57%) had detectable mutations in ctDNA before tumor resection. Both ctDNA detection rates and ctDNA concentrations were significantly higher in plasma obtained during surgery compared with presurgical specimens (57% versus 19% ctDNA detection rate, and 12.47 versus 6.64 ng·mL −1 , respectively). Four patients (19%) remained ctDNA‐positive at 1–2 weeks after surgery, with all of them (100%) experiencing disease progression at later time points. In contrast, only 4 out of 12 ctDNA‐negative patients (33%) after surgery experienced relapse during follow‐up. Positive ctDNA in early postoperative plasma samples was associated with shorter progression‐free survival ( P = 0.013) and overall survival ( P = 0.004). Our findings suggest that, in early‐stage and locally advanced NSCLC, intraoperative plasma sampling results in high ctDNA detection rates and that ctDNA positivity early after resection identifies patients at risk for relapse.
    Type of Medium: Online Resource
    ISSN: 1574-7891 , 1878-0261
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2415106-3
    detail.hit.zdb_id: 2322586-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 6 ( 2023-03-12), p. 5411-
    Abstract: Background: Mutations in cKIT or PDGFRA are found in up to 90% of patients with gastrointestinal stromal tumors (GISTs). Previously, we described the design, validation, and clinical performance of a digital droplet (dd)PCR assay panel for the detection of imatinib-sensitive cKIT and PDFGRA mutations in circulating tumor (ct)DNA. In this study, we developed and validated a set of ddPCR assays for the detection of cKIT mutations mediating resistance to cKIT kinase inhibitors in ctDNA. In addition, we cross-validated these assays using next generation sequencing (NGS). Methods: We designed and validated five new ddPCR assays to cover the most frequent cKIT mutations mediating imatinib resistance in GISTs. For the most abundant imatinib-resistance-mediating mutations in exon 17, a drop-off, probe-based assay was designed. Dilution series (of decreasing mutant (MUT) allele frequency spiked into wildtype DNA) were conducted to determine the limit of detection (LoD). Empty controls, single wildtype controls, and samples from healthy individuals were tested to assess specificity and limit of blank (LoB). For clinical validation, we measured cKIT mutations in three patients and validated results using NGS. Results: Technical validation demonstrated good analytical sensitivity, with a LoD ranging between 0.006% and 0.16% and a LoB ranging from 2.5 to 6.7 MUT fragments/mL. When the ddPCR assays were applied to three patients, the abundance of ctDNA in serial plasma samples reflected the individual disease course, detected disease activity, and indicated resistance mutations before imaging indicated progression. Digital droplet PCR showed good correlation to NGS for individual mutations, with a higher sensitivity of detection. Conclusions: This set of ddPCR assays, together with our previous set of cKIT and PDGFRA mutations assays, allows for dynamic monitoring of cKIT and PDGFRA mutations during treatment. Together with NGS, the GIST ddPCR panel will complement imaging of GISTs for early response evaluation and early detection of relapse, and thus it might facilitate personalized decision-making.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 99, No. 7 ( 2020-07), p. 1551-1560
    Abstract: TP53 aberrations reportedly predict favorable responses to decitabine (DAC) in acute myeloid leukemia (AML). We evaluated clinical features and outcomes associated with chromosome 17p loss or TP53 gene mutations in older, unfit DAC-treated AML patients in a phase II trial. Of 178 patients, 25 had loss of 17p in metaphase cytogenetics; 24 of these had a complex (CK+) and 21 a monosomal karyotype (MK+). In analyses in all patients and restricted to CK+ and MK+ patients, 17p loss tended to associate with higher rates of complete remission (CR), partial remission (PR), or antileukemic effect (ALE). Despite favorable response rates, there was no significant OS difference between patients with or without loss of 17p in the entire cohort or in the CK+ and MK+ cohort. TP53 mutations were identified in eight of 45 patients with material available. Five of the eight TP53 -mutated patients had 17p loss. TP53 -mutated patients had similar rates of CR/PR/ALE but shorter OS than those with TP53 wild type ( P  = 0.036). Moreover, patients with a subclone based on mutation data had shorter OS than those without ( P  = 0.05); only one patient with TP53 -mutated AML had a subclone. In conclusion, 17p loss conferred a favorable impact on response rates, even among CK+ and MK+ patients that however could not be maintained. The effect of TP53 mutations appeared to be different; however, patient numbers were low. Future research needs to further dissect the impact of the various TP53 aberrations in HMA-based combination therapies. The limited duration of favorable responses to HMA treatment in adverse-risk genetics AML should prompt physicians to advance allografting for eligible patients in a timely fashion.
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1064950-5
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Leukemia Research, Elsevier BV, Vol. 98 ( 2020-11), p. 106454-
    Type of Medium: Online Resource
    ISSN: 0145-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 752396-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 142, No. Supplement 1 ( 2023-11-02), p. 2987-2987
    Abstract: Introduction Patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) are characterized by a particularly poor prognosis. Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has improved outcomes of patients with r/r DLBCL, yet a substantial proportion of patients still experiences relapse or progression after CAR T-cell treatment. Identifying patients at high risk of CAR T-cell therapy resistance or future lymphoma progression remains challenging. Here, we explored the value of circulating tumor DNA (ctDNA) as a prognostic biomarker at baseline and early into treatment in DLBCL patients undergoing standard-of-care CAR T-cell therapy, without the need for matched tumor genotypes. We further investigated associations between ctDNA and other known clinical risk factors. Methods We applied targeted next-generation sequencing (NGS) to a total of 53 samples from r/r DLBCL patients receiving CAR T-cell therapy (axicabtagene ciloleucel and tisagenlecleucel, n=16) at the University Medical Center Freiburg (Germany), using a modified version of the AVENIO ctDNA analysis workflow (Roche; Research Use Only) that covered ~314kb and targeted 466 distinct genes recurrently mutated in DLBCL (based on the CAPP-Seq workflow, Kurtz DM et al. J Clin Oncol 2018). Tumor genotypes were assessed noninvasively from plasma samples obtained at baseline before lymphodepletion with matched germline controls. Concentrations of ctDNA were quantified at baseline and early after CAR T-cell therapy at day 7-10. Initial treatment response was assessed by conventional PET-CT obtained 4-6 weeks after treatment based on the Lugano criteria. Results At baseline prior to lymphodepletion, we detected somatic mutations in 100% of plasma samples by noninvasive genotyping, with a median of 19.5 mutations per patient (range: 3-97). The most frequently mutated genes were IGHV, IGLL5, BCL2, MYC, BTG1, CREBBP, and TP53. Patients with high baseline ctDNA concentrations (mean allele frequency [AF] & gt;= 1%) showed shorter progression-free survivial (PFS) and overall survival (OS) than patients with ctDNA levels below this threshold (median PFS: 86.5 days vs. not reached, p=0.04, HR: 6.3, 95% CI: 1.7-23.6; median OS: 219 days vs. not reached, p=0.048, HR: 4.1, 95% CI 1.0-16.6, Figure 1). Pretreatment ctDNA levels were significantly correlated with LDH concentrations ( p=0.049, r=0.5). We further found significantly higher ctDNA concentrations in patients with transformed DLBCL (vs. non-transformed, p=0.008) and in those with 3 or more prior treatment lines (vs. 1-2, p=0.04). At day 7-10 after CAR T-cell therapy, ctDNA levels dropped a median of 10-fold compared to the pretreatment time point ( p=0.008). Patients achieving a complete (CMR) or partial metabolic response (PMR) by PET-CT after 4-6 weeks showed a significant decrease of ctDNA ( p=0.001), while those with a stable (SD) or progressive disease (PD) had no significant ctDNA reduction at day 7-10 after CAR T-cell infusion. Vice versa, while 100% of patients with a & gt;1.5-log-fold drop of ctDNA level between the pretreatment and interim time point revealed a CMR or PMR in early PET-CT scans, only 62% of patients with a smaller ctDNA decline responded to treatment according to PET-CT. Conclusions Our data suggests, together with previously published studies (Sworder BJ et al., Cancer Cell, 2023; Frank MJ et al. J Clin Oncol, 2021), that ctDNA profiling may allow robust noninvasive genotyping, accurate risk-stratification, and early prediction of clinical outcomes in r/r DLBCL patients undergoing CAR T-cell therapy. Although limited by small sample size, this pilot study highlights a potential future role of ctDNA measurements for personalized treatment selection and guidance in clinical trials.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Diagnostics, MDPI AG, Vol. 10, No. 8 ( 2020-08-02), p. 550-
    Abstract: Background: Circulating tumor DNA (ctDNA) in the blood plasma of cancer patients is an emerging biomarker used across oncology, facilitating noninvasive disease monitoring and genetic profiling at various disease milestones. Digital droplet PCR (ddPCR) technologies have demonstrated high sensitivity and specificity for robust ctDNA detection at relatively low costs. Yet, their value for ctDNA-based management of a broad population of cancer patients beyond clinical trials remains elusive. Methods: We developed mutation-specific ddPCR assays that were optimized for their use in real-world cancer management, covering 12 genetic aberrations in common cancer genes, such as EGFR, BRAF, KIT, KRAS, and NRAS. We assessed the limit of detection (LOD) and the limit of blank (LOB) for each assay and validated their performance for ctDNA detection using matched tumor sequencing. Results: We applied our custom ddPCR assays to 352 plasma samples from 96 patients with solid tumors. Mutation detection in plasma was highly concordant with tumor sequencing, demonstrating high sensitivity and specificity across all assays. In 20 cases, radiographic cancer progression was mirrored by an increase of ctDNA concentrations or the occurrence of novel mutations in plasma. Moreover, ctDNA profiling at diagnosis and during disease progression reflected personalized treatment selection through the identification of actionable gene targets in 20 cases. Conclusion: Collectively, our work highlights the potential of ctDNA assessment by sensitive ddPCR for accurate disease monitoring, robust identification of resistance mutations, and upfront treatment selection in patients with solid tumors. We envision an increasing future role for ctDNA profiling within personalized cancer management in daily clinical routine.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...