GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2018
    In:  Acta Physica Sinica Vol. 67, No. 19 ( 2018), p. 198101-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 19 ( 2018), p. 198101-
    Abstract: To enhance backscattering, corner reflector and Luneburg lens are usually used. They can operate effectively in a broad angle range and also in a quite wide band. However, corner reflector as a typical structure of backscattering enhancement device, has obvious disadvantages in practical application. For example, it is usually made of metal material, which causes it to be too heavy and bulky. Luneburg lens is generally made of dielectric with strong loss and high cost, which is unfavorable for applications. Thus, it is necessary to explore a new way to realize wide-angle backscattering enhancement. In this paper, a phase gradient metasurface with wide-angle radar cross section (RCS) enhancement property is proposed and demonstrated, which consists of two phase gradients with equal magnitude but in opposite directions. Through designing a reflective phase profile along the surface, an equivalent wave vector can be generated, with doubled magnitude but in an opposite direction to the parallel component of the wave vector of the incident wave. At the incidence angles =-45 and 45, electromagnetic (EM) waves are reflected to the directions just opposite to the directions of incident waves. And at incidence angle =0, the incident EM wave is coupled into spoof surface wave and then guided to another region to decouple into a free space wave. These guarantee RCS enhancement property in a related angular domain. The polarization independent Jerusalem cross unit is used to design the phase gradient, and a wide-angle RCS enhancement metasurface is designed. The simulated results indicate that at the designed incidence angles, directions of the reflected waves are all opposite to the directions of incidence waves for both x and y polarized wave. In order to evaluate the RCS enhancement performances, the mono-static RCS of the designed wide-angle RCS enhancement metasurface is measured. Both the simulations and experiments are in good agreement with each other, and show that the designed metasurface obtains tremendous RCS enhancement performances in a wide-angle domain (-45-45) for both x and y polarized wave with frequencies ranging from 9 GHz to 12 GHz.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2018
    In:  Acta Physica Sinica Vol. 67, No. 20 ( 2018), p. 204101-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 20 ( 2018), p. 204101-
    Abstract: In this paper, a method of designing the frequency selective structure based on spoof surface plasmon polariton (SSPP) is proposed and demonstrated. According to the applications in different working bands, the designed frequency selective surface (FSS) and metallic fishbone structure array can be combined together to form a new frequency selective structure and satisfy the requirements for practical applications. Meanwhile, a dual-band-pass frequency selective structure with the property of steep cut-off frequency and high-efficiency transmission and inhibition is designed by using this method. The dual-band-pass frequency selective structure is composed of a metallic fishbone structure array and two identical FSSs. The metallic fishbone structure based on SSPP coupling can form a broadband high-efficiency transmission below the cut-off frequency of SSPP on the metallic fishbone structure. When a dual-band-pass FSS is loaded to this metallic fishbone structure array, a dual-band-pass frequency selective structure can be achieved. To improve the impedance matching of the dual-band-pass frequency selective structure, two identical FSSs are respectively loaded to the top and bottom sides of the metallic fishbone structure array. The simulated transmissivities of the dual-band-pass frequency selective structure exceed-0.5 dB in two frequency ranges:3.0-4.1 GHz and 10.5-10.9 GHz. The simulated transmissivities are lower than-10 dB in other frequency ranges:4.7-9.2 GHz and 12.1-18 GHz. The simulated transmissivities are even below-20 dB from 12.4 GHz to 15.5 GHz. The electromagnetic waves can be efficiently transmitted in the passband and restrained in the stopband. Then the dual-band-pass frequency selective structure is fabricated by using the printed circuit board technique and measured in the anechoic chamber. The measured results indicate that the real property of the dual-band-pass frequency selective structure is consistent with the simulated property and this method of designing the frequency selective structure is feasible. After filling the lightweight foam into the gap of the metallic fishbone structure, the mechanical loading property can be highly improved. Therefore, we can realize the design of combined structural and functional performance.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 12 ( 2015), p. 124102-
    Abstract: The phase profiles of the reflected circularly polarized waves can be freely manipulated by virtue of a co-polarization reflective metasurface. Based on the co-polarization reflective metasurface, a circularly polarized wave reflection focusing metasurface can be achieved, it can make the reflected waves focus at a focal spot under the normal incidence of circularly polarized plane waves. In this paper, a reflection focusing metasurface is designed. It is found that around the central frequency f=16 GHz, the reflected waves focus on a focal spot above the metasurface with a focal distance L=200 mm under the normal incidence of right-handed circularly polarized waves. However, in the case of normal incidence of left-handed circularly waves, the reflected waves focus on an imaginary focal spot below the metasurface with the focal distance L=-200 mm. The beam-width at the focal spot and focal depth are also calculated by using CST Microwave Studio. The simulation results indicate that the beam-width at the focal spot is approximately equal to the operating wavelength. Therefore, the circularly polarized wave reflection focusing metasurface has a good performance for focusing the reflected waves. In addition, the proposed focusing metasurface displays the advantages of the long focal depth and the broad operating bandwidth.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 8 ( 2014), p. 084103-
    Abstract: Dealing with potential applications of phase gradient metasurfaces in stealth technologies, we propose to realize wide-band radar cross section (RCS) reduction by combining the two mechanisms of surface wave generation and anomalous reflection. A two-dimensional phase gradient based metasurface is designed using split-ring resonators. Around the designed central frequency f=10 GHz, the incident waves are coupled into surface waves propagating along the metasurface. While at the frequency band f〉11 GHz, anomalous reflection and diffuse reflection occur. In this way, wide-band RCS reduction can be realized. A test sample with a total thickness of 2 mm is fabricated and its reflection and backward RCS are measured and compared with those of bare metallic plate with the same size. The comparison shows that the metasurface achieves more than 10 dB reduction in the measured wide range (9.5-17.0 GHz). The metasurface is a polarization independent, electrically thin, light-weight and wide-band, so it is of great application values in novel stealth technologies and materials.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 9 ( 2015), p. 094101-
    Abstract: For dealing with circularly polarized waves, a high-efficient two-dimensional dispersionless phase-gradient metasurface is devised and achieved by spatially arranging co-polarized reflective metasurface unit cells. The phase of the co-polarized reflection can be freely modulated via a rotating metallic wire of the co-polarized reflective metasurface unit cell in-plane. The achieved phase gradient metasurface can produce opposite-sign phase gradient for left-and right-handed circularly polarized incident waves. During linearly polarized wave incidence, the reflected waves will decompose into two counter-directionally propagating circularly polarized waves. Reflective power density spectra for the linearly polarized wave in normal incidence are simulated, which are well consistent with the theoretically designed anomalous reflection direction. A 2 mm thick sample is fabricated and the mirror reflectivity curve is measured. Experimental results show that for linearly polarized wave normal incidence, the mirror reflectivity is reduced to below -5 dB in a wide band from 9.5 to 17.0 GHz.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 18 ( 2015), p. 184101-
    Abstract: Phase gradient meatsurface (PGM) is a new way to control reflective beam and refractive beam. By means of PGM, wave-fronts can be controlled in a more freedom way. The generalized Snell's law was put forward first by Nanfang Yu et al. [Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 333 334] to describe the anomalous refraction on PGM. Anomalous refraction and out-of-plane reflection were then demonstrated using PGM composed of V-shaped nanoantennas. As deeper research about PGM, many reflective PGMs are also proposed. Typical examples are the reflective PGM using H-shaped resonators by Lei Zhou's group and using split-ring resonators by Shaobo Qu's group, both acting as high-efficiency surface wave couplers. However phase gradient of most PGMs above are achieved in a narrow-band and cannot change the polarizations. Anomalous reflection can only be realized in a certain narrow-band, and anomalous reflective angles cannot be precisely predicted. In this paper, a polarized conversion metasurface based on double-circular metallic resonator is first designed. The conversion successfully achieves ultra-wideband cross-polarization for linearly-polarized waves within a broadband of 12.2 GHz (from 7.9-20.1 GHz) with more than 99% cross-polarized reflectance. On the premise of high efficiency, reflective phase can be regulated by changing geometrical parameter of double-circular metallic structure. Then a broadband one-dimensional dispersive phase gradient metasurface comprised of six unit cells periodically arrayed above substrate is designed and fabricated. The PGM can perfectly achieve anomalous reflection. Measured result about its specular reflectivity is in good agreement with simulated result. Moreover, the measurement results of E-field distribution and anomalous reflective angle nearly accord with simulation results. Anomalous reflective angle is precisely predicted based on the generalized Snell's law. Both simulation and experiment verify that the PGM can make incident waves efficiently coupled as surface waves from 8.9-10 GHz and anomalously reflected in a range from 10 GHz to 18.1 GHz.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2016
    In:  Acta Physica Sinica Vol. 65, No. 17 ( 2016), p. 174101-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 17 ( 2016), p. 174101-
    Abstract: Circulators are widely used microwave components that rely on magnetic materials. They have been a subject of extensively theoretical and experimental development for over 50 years. Nowadays, commercial circulators require ferrite and external bias magnetic field to realize circulation performance. However, ferrite circulators suffer major drawbacks: they are too heavy, incompatible with integrated circuit technologies, expensive, sensitive to temperature, etc. So, it is very hard to further improve the characteristic of traditional ferrite circulator. And it is important to overcome the major drawbacks of the traditional ferrite circulator. In this paper, the anomalous refraction feature of the phase gradient metasurface is utilized to realize nonreciprocal characteristics. Magnetless circulator based on phase gradient metasurface is proposed and then analyzed. The circulator consists of phase gradient metasurfaces and a three-port waveguide. Three metasurfaces are arranged into 60-degree angle with respect to each other. The metasurface shows high efficiency in anomalous refraction. With the help of phase gradient metamaterial, the signal can only be refracted to the next port in rotation along one direction. That makes the circulation performance. To design and optimize the circulator for better circulation performance, the numerical simulations are performed using the full-wave electromagnetic simulator CST Microwave Studio 2013. To verify the design of the circulator based on phase gradient metasurface, the circulator is fabricated using waveguide and metasurfaces. The scattering parameters of the magnetless circulator based on phase gradient metasurface are measured using a vector network analyzer (Agilent N5230 A). The measured S-parameters show that the circulator exhibits good circulation performances at a frequency of 20.8 GHz. At 20.8 GHz, the insertion loss is 0.8 dB. And the return loss and isolation degree can reach -10 dB. In this paper, a new method is used to design the circulators. This work makes it possible to reduce the weight of the device. Moreover, it is also insensitive to temperature. Therefore, we can make a conclusion that the magnetless circulator based on phase gradient metasurface has potential value in application. However, there is still lots of work to do to improve the performance of the circulator. In future work, we will use wideband metasurfaces to broaden the bandwidth, improve the isolation degree, reduce the insertion loss, and reduce the return loss. And free space can be lead into the circulator to reduce the bulk of the circulator and improve the circulation performance.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 14 ( 2016), p. 147301-
    Abstract: A multi-beam antenna based on spoof surface plasmon polariton (SSPP) is proposed, which is composed of 24 identical end-fire antennas rotating around the center of the circle. Thus the angle between any two end-fire antennas is 15. Every single end-fire antenna consists of feeding monopole and periodic metallic blade structure sandwiched between two identical 0.5 mm-thick F4B substrates (r=2.65, tan()=0.001). And the periodic metallic blade structure can be regarded as two regions. The first region (Region I) is a double-side corrugated metallic strips with continuous gradient height, so that the SSPP has a linear propagation constant distribution on the strips. Good matching of both impedance and wave vectors between spatial wave and SSPP waveguide ensures the conversion of high-efficiency from spatial modes into SSPP modes and that of high-efficiency radiation from SSPP modes into spatial modes. The second region (Region II) is the transition part of the SSPP wave with constant blade height. Geometric parameters are optimized by using CST Microwave Studio and the dimension of the single end-fire antenna is 111 mm15.2 mm1 mm. A prototype is fabricated and tested, showing good agreement between numerical simulation and experimental results, which proves that the electromagnetic wave of the monopole is successfully coupled and nearly completely confined on the metallic blade structure, and radiated at the end of the blade, resulting in omnidirectional radiation pattern of the monopole being mediated to directive beam steering at end fire. Rotate the 24 identical antennas around the center of the circle with respect to a cylinder, namely the proposed 360 scanning multi-beam antenna in this paper. The optimized radius of the proposed antenna cylinder is set to be 128 mm. The simulated and measured results are consistent with each other and clearly indicate that the proposed multi-beam antenna shows a scanning capability over 360 in the xoy plane with an average directivity of approximately 11.8 dBi and 3 dB angular width of 15 in operation bandwidth 9.5-10.25 GHz. Changing the geometric parameters of the blade structure, the characteristics of the gain, bandwidth, and 3 dB angular width for multi-beam antenna will be also changed. Unlike traditional multi-beam antennas, the proposed antenna based on SSPP mode coupling is no longer limited to the principle of geometrical optics, but mediates the omnidirectional radiation pattern of the monopole to directive beam by utilizing great confinement property of SSPP, which gives high degree of freedom for designing the multi-beam antennas. Besides, derived from the characteristics of deep-subwavelength and localized field enhancement for SSPPs, the proposed multi-beam antenna obtains many advantages, such as low profile, simple structure, high realizability, and important application values.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...