GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Wang, Yuyang  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    In: Bioengineering, MDPI AG, Vol. 10, No. 8 ( 2023-08-10), p. 952-
    Abstract: For robot-assisted dental implant surgery, it is necessary to feed the instrument into a specified position to perform surgery. To improve safety and efficiency, a preoperative planning framework, including a finite-parameter surrogate model (FPSM) and an automatic instrument-placement method, is proposed in this paper. This framework is implemented via two-stage optimization. In the first stage, a group of closed curves in polar coordinates is used to represent the oral cavity. By optimizing a finite number of parameters for these curves, the oral structure is simplified to form the FPSM. In the second stage, the FPSM serves as a fast safety estimator with which the target position/orientation of the instrument for the feeding motion is automatically determined through particle swarm optimization (PSO). The optimized feeding target can be used to generate a virtual fixture (VF) to avoid undesired operations and to lower the risk of collision. This proposed framework has the advantages of being safe, fast, and accurate, overcoming the computational burden and insufficient real-time performance of complex 3D models. The framework has been developed and tested, preliminarily verifying its feasibility, efficiency, and effectiveness.
    Type of Medium: Online Resource
    ISSN: 2306-5354
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2746191-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Machines, MDPI AG, Vol. 11, No. 1 ( 2022-12-21), p. 3-
    Abstract: In robot-assisted oral surgery, the surgical tool needs to be fed into the target position to perform surgery. However, unmodeled extraoral and complex intraoral environments bring difficulties to motion planning. Meanwhile, the motion is operated manually by the surgeon, causing relatively limited accuracy as well as the risk of misoperation. Moreover, the random movements of the patient’s head bring additional disturbance to the task. To achieve the task, a motion strategy based on a new conical virtual fixture (VF) was proposed. First, by preoperatively specifying a conical guiding cone as the VF, virtual repulsive forces were applied on the out-of-range end effector. Then, based on the two-point adjustment model and velocity conversion, the effect of VF was established to prevent the end-effector from exceeding the constraint region. Finally, a vision system corrects the guiding cone to compensate for the random movement of the patient’s head to feed to a dynamic target. As an auxiliary framework for surgical operation, the proposed strategy has the advantages of safety, accuracy, and dynamic adaptability. Both simulations and experiments are conducted, verifying the feasibility of the proposed strategy.
    Type of Medium: Online Resource
    ISSN: 2075-1702
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704328-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...