GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (5)
  • Wang, Yan  (5)
Material
Publisher
  • Frontiers Media SA  (5)
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Cellular and Infection Microbiology Vol. 11 ( 2022-1-12)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 11 ( 2022-1-12)
    Abstract: Cryptococcus neoformans ( C. neoformans )/ C. gattii can easily invade the human central nervous system and cause cryptococcal meningitis (CM). The clinical fatality rate of these fungi is extremely high and causes more than 180,000 deaths worldwide every year. At present, the common clinical identification methods of these fungi are traditional culture methods and Indian ink staining. In addition, enzyme-linked immunosorbent assay (ELISAs), polymerase chain reaction (PCR), real-time quantitative PCR detecting system (qPCR), mass spectrometry, and metagenomic next-generation sequencing (mNGS) have also been applied to detect these fungus. Due to the rapid progress of meningitis caused by C. neoformans / C. gattii infection, there is a desperate need for fast, sensitive, and on-site detection methods to meet the clinical diagnosis. Recombinase polymerase amplification (RPA) is a promising isothermal amplification technique that can compensate for the shortcomings of the above techniques, featuring short reaction time, high specificity, and high sensitivity, thus meeting the demand for in-field detection of C.neoformans / C. gattii . In our study, RPA- lateral flow strip (LFS) was used to amplify the capsule-associated gene, CAP64 , of C. neoformans / C. gattii , and the primer-probe design was optimized by introducing base mismatches to obtain a specific and sensitive primer-probe combination for clinical testing, and specificity of the detection system was determined for 26 common clinical pathogens. This system was developed to obtain results in 20 min at an isothermal temperature of 37°C with a lower limit of detection as low as 10 CFU/μL or 1 fg/μL. A total of 487 clinical samples collected from multicenter multiplexes were tested to evaluate the detection performance of the RPA-LFS system, which revealed that the system could specifically detect C. neoformans / C. gattii , meeting the need for rapid, specific, and sensitive detection.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Oncology Vol. 12 ( 2022-9-14)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-9-14)
    Abstract: Adenosquamous carcinoma (ASC) of the lung is a relatively rare tumor with strong aggressiveness and poor prognosis. The analysis of mutational signatures is becoming routine in cancer genomics and has implications for pathogenesis, classification, and prognosis. However, the distribution of mutational signatures in ASC patients has not been evaluated. In this study, we sought to reveal the landscape of genomic mutations and mutational signatures in ASC. Next-generation sequencing (NGS) technology was used to retrieve genomic information for 124 ASC patients. TP53 and EGFR were the most prevalent somatic mutations observed, and were present in 66.9% and 54.8% of patients, respectively. CDKN2A (21%), TERT (21%), and LRP1B (18.5%) mutations were also observed. An analysis of gene fusion/rearrangement characteristics revealed a total of 64 gene fusions. The highest frequency of variants was determined for ALK fusions, with six ALK-EML4 classical and two intergenic ALK fusions, followed by three CD74-ROS1 fusions and one ROS1-SYN3 fusion. EGFR 19del (45.6%), and EGFR L858R (38.2%) and its amplification (29.4%) were the top three EGFR mutations. We extracted mutational signatures from NGS data and then performed a statistical analysis in order to search for genomic and clinical features that could be linked to mutation signatures. Amongst signatures cataloged at COSMIC, the most prevalent, high-frequency base changes were for C & gt; T; and the five most frequent signatures, from highest to lowest, were 2, 3, 1, 30, and 13. Signatures 1 and 6 were determined to be associated with age and tumor stage, respectively, and Signatures 22 and 30 were significantly related to smoking. We additionally evaluated the correlation between tumor mutational burden (TMB) and genomic variations. We found that mutations ARID2 , BRCA1 , and KEAP1 were associated with high TMB. The homologous recombination repair (HRR) pathway-related gene mutation displayed a slightly higher TMB than those without mutations. Our study is the first to report comprehensive genomic features and mutational signatures in Chinese ASC patients. Results obtained from our study will help the scientific community better understand signature-related mutational processes in ASC.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 12 ( 2022-7-28)
    Abstract: Candida glabrata is the second or third most common Candida-associated species isolated from hospital-acquired infections, surpassing even C. albicans in some hospitals. With the rapid progression of the disease course of C. glabrata infections, there is an urgent need for a rapid and sensitive on-site assay for clinical diagnosis. Isothermal amplification is a recently developed method for rapid nucleic acid detection that is being increasingly used for on-site detection, especially recombinase polymerase amplification (RPA). RPA combined with lateral flow strips (LFS) can rapidly amplify and visually detect the target gene within 20 min. The whole detection process can be controlled within 30–60 min by rapid sample pre-treatment. In this study, RPA-LFS was used to amplify the internal transcribed spacer region 2 gene of C. glabrata . The primer–probe design was optimized by introducing base mismatches (probe modification of one base) to obtain a highly specific and sensitive primer–probe combination for clinical sample detection. RPA-LFS was performed on 23 common clinical pathogens to determine the specificity of the assay system. The RPA-LFS system specifically detected C. glabrata without cross-reaction with other fungi or bacteria. Gradient dilutions of the template were tested to explore the lower limit of detection of this detection system and to determine the sensitivity of the assay. The sensitivity was 10 CFU/µL, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 227 clinical samples to evaluate the detection performance of the RPA-LFS system. Eighty-five samples were identified as C. glabrata , representing a detection rate of 37.5%. The results were consistent with qPCR and conventional culture methods. The collective findings indicate a reliable molecular diagnostic method for the detection of C. glabrata , and to meet the urgent need for rapid, specific, sensitive, and portable clinical field-testing.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 12 ( 2022-7-29)
    Abstract: The incidence of Candida infections in intensive care units (ICU) has significantly increased in recent years, and these infections have become one of the most serious complications threatening the lives of ICU patients. The proportion of non- Candida albicans infections, such as Candida krusei and Candida glabrata infections, which are resistant to fluconazole, is increasing each year. Early identification of the strains causing Candida infections is important for the timely implementation of targeted treatments to save patients’ lives. However, the current methods of direct microscopy, culture, and histopathology, as well as other diagnostic methods, have many shortcomings, such as their low sensitivity and long assay times; therefore, they cannot meet the needs for early clinical diagnosis. Recombinant polymerase amplification (RPA) is a promising isothermal amplification technique that can be performed without sophisticated instruments and equipment, and is suitable for use in resource-poor areas. RPA combined with lateral flow strips (LFS) can be used to rapidly amplify and visualize target genes within 20 min. In this study, RPA-LFS was used to amplify the internal transcribed spacer 2 (ITS2) region of C. krusei. The primer-probe design was optimized by introduction of base mismatches (probe modification of five bases) to obtain a specific and sensitive primer-probe combination for the detection of clinical specimens. Thirty-five common clinical pathogens were tested with RPA-LFS to determine the specificity of the detection system. The RPA-LFS system specifically detected C. krusei without cross-reaction with other fungi or bacteria. A gradient dilution of the template was tested to explore the lower limit of detection and sensitivity of the assay. The sensitivity was 10 CFU/50 µL per reaction, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 189 clinical specimens to evaluate the detection performance of the RPA-LFS system. Seventy-six specimens were identified as C. krusei , indicating a detection rate of 40.2%. The results were consistent with those of qPCR and conventional culture methods. The RPA-LFS system established in our study provides a reliable molecular diagnostic method for the detection of C. krusei , thus meeting the urgent need for rapid, specific, sensitive, and portable clinical field testing.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Cell and Developmental Biology Vol. 8 ( 2020-5-25)
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 8 ( 2020-5-25)
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2737824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...