GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (1)
  • Wang, Tianyu  (1)
  • Physics  (1)
Material
Publisher
  • American Meteorological Society  (1)
Person/Organisation
Language
Years
Subjects(RVK)
  • Physics  (1)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 2 ( 2023-01-15), p. 485-510
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 2 ( 2023-01-15), p. 485-510
    Abstract: The Kuroshio Extension (KE) system has been observed to experience a decadal cycle between dynamically stable and unstable states. However, divergent conclusions on its interaction with the atmosphere obfuscate the understanding of its oscillatory nature at the preferred decadal time scale. Here, using satellite observations and the ERA-Interim reanalysis in 2002–16, physical process-oriented diagnoses suggest that the wintertime finer-scale thermodynamic response to mesoscale oceanic surface conditions and slow oceanic Rossby wave adjustment frame a coupled ocean–atmosphere delayed oscillator for the decadal KE variability. During the stable state of the KE system, the downstream KE transition region is rich in mesoscale oceanic warming associated with warm eddies, which induces surface wind convergence and upward motion, probably via the enhanced turbulent mixing. Meanwhile, increased finer-scale diabatic heating in the lower troposphere with abundant moisture supply from warmer water likely facilitates the deep-reaching updraft that adiabatically cools the middle troposphere. The background northwesterly wind helps to spread out the cooling, leading to southward deflection of local atmospheric eddy available potential energy (EAPE) production by baroclinic conversion. Consequently, the synoptic eddy activity displaces southward across the basin with additional energy supply from the increased diabatic production of EAPE downstream. Anomalous synoptic eddy thermal and vorticity forcing eventually fosters the basin-scale equivalent-barotropic cyclonic circulation anomaly, which is further maintained by energy conversion from the background state. The resultant wind-driven negative sea surface height anomalies propagate westward into the upstream KE region with a delay of ∼4 years and can trigger the unstable state of the KE system.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...