GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wang, Qiang  (2)
  • Geography  (2)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • Geography  (2)
RVK
  • 1
    In: Journal of Petrology, Oxford University Press (OUP), Vol. 61, No. 2 ( 2020-10-05)
    Abstract: Accretionary orogens are characterized by voluminous juvenile components (recently derived from the mantle) and knowing the origin(s) of such components is vital for understanding crustal generation. Here we present field and petrological observations, along with mineral chemistry, zircon U–Pb age and Hf–O isotope data, and whole rock geochemical and Sr–Nd isotopic data for the c.320 Ma Ulungur intrusive complex from the Central Asian Orogenic Belt. The complex consists of two different magmatic series: one is characterized by medium- to high-K calc-alkaline gabbro to monzogranite; the other is defined by peralkaline aegirine–arfvedsonite granitoids. The calc-alkaline and peralkaline series granitoids have similar depleted mantle-like Sr–Nd–Hf isotopic compositions, but they have different zircon δ18O values: the calc-alkaline series have mantle-like δ18O values with mean compositions ranging from 5·2 ± 0·5‰ to 6·0 ± 0·9‰ (2SD), and the peralkaline granitoids have low δ18O values ranging from 3·3 ± 0·5‰ to 3·9 ± 0·4‰ (2SD). The calc-alkaline series were derived from a hydrous sub-arc mantle wedge, based on the isotope and geochemical compositions, under garnet peridotite facies conditions. This study suggests that the magmas underwent substantial differentiation, ranging from high pressure crystallization of ultramafic cumulates in the lower crust to lower pressure crystallization dominated by amphibole, plagioclase and minor biotite in the upper crust. The peralkaline series rocks are characterized by δ18O values lower than the mantle and enrichment of high field strength elements (HFSEs) and heavy rare earth elements (HREEs). They likely originated from melting of preexisting hydrothermally altered residual oceanic crust in the lower crust of the Junggar intra-oceanic arc. Early crystallization of clinopyroxene and amphibole was inhibited owing to their low melting temperature, leading to HFSEs and HREEs enrichment in residual peralkaline melts during crystallization of a feldspar-dominated mineral assemblage. Thus, the calc-alkaline and peralkaline series represent episodes of crust generation and reworking, respectively, demonstrating that the juvenile isotopic signature in accretionary orogens can be derived from diverse source rocks. Our results show that reworking of residual oceanic crust also plays an important role in continental crust formation for accretionary orogens, which has not previously been widely recognized.
    Type of Medium: Online Resource
    ISSN: 0022-3530 , 1460-2415
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1466724-1
    detail.hit.zdb_id: 219124-6
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Petrology, Oxford University Press (OUP), Vol. 61, No. 5 ( 2020-11-08)
    Abstract: Most genetic models for magmatic-hydrothermal ore deposits are based on the prerequisite that the parental magmas associated with mineralization are enriched in water ( & gt; ∼4 wt %). However, it has been recognized that a number of magmatic-hydrothermal ore deposits also formed within tectono-magmatic settings that produce initially water-poor magmas such as Climax-type porphyry deposits. Here, we present a detailed reconstruction of the Tieshan magma plumbing system related to skarn-porphyry Cu–Fe–Au mineralization in the Edong district, in which primitive magmas typically show water-poor features. Applications of multiple thermodynamic calibrations on various magmatic units from the Tieshan and Tonglushan deposits provide a wealth of information regarding the structure and evolution of the transcrustal magmatic system. Petrographic observations and clinopyroxene-liquid thermobarometry calculations indicate that the Tieshan magmatic-hydrothermal system was fed by a deep crustal magma reservoir. An accurate picture of the evolution of H2O within the magma plumbing system is presented using the plagioclase-liquid hygrometer in combination with the amphibole hygrometer. Three critical stages during the evolution of water within the plumbing system have been recognized, associated with H2O contents of 0·8–1·7 wt %, 2·1–2·8 wt % and 3·2–4·6 wt %, respectively. The first enrichment of water in the magmas can be attributed to the separation and transfer of evolved melts from the deep magma reservoir to the shallow crust. Continuous cooling and solidification of the shallow magma body gave rise to the second enrichment of H2O in residual melts, leading to magmas that were fertile for the formation of ore deposits. The detailed chemical evolution of the magma plumbing system was investigated using mineral trace element compositions in combination with the partition coefficients predicted by the lattice strain model. The earliest equilibrium melts are characterized by high Sr contents (the average = 658 ± 64 ppm), suggesting that high Sr/Y signatures were likely derived from their magma sources or fractionation at deeper levels in initially water-poor environments. Variations of some particular geochemical fingerprints in equilibrium melts such as, Dy/Dy* and Eu/Eu*, also provide fundamental information on the evolution of the magma plumbing system. Our study confirms the critical role of a deep crustal magma reservoir on the formation of magmatic-hydrothermal ore deposits. The fertility of magmas with respect to ore deposit formation was enhanced by the extraction and transfer of evolved magmas from the deep reservoir to shallower levels, particularly due to the enrichment of magmatic water contents. In addition, the presence of a deep magma reservoir also sustains the incremental growth of shallow magma chambers, which provide ore-forming fluids.
    Type of Medium: Online Resource
    ISSN: 0022-3530 , 1460-2415
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1466724-1
    detail.hit.zdb_id: 219124-6
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...