GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Cellular and Molecular Medicine Vol. 23, No. 6 ( 2019-06), p. 3897-3904
    In: Journal of Cellular and Molecular Medicine, Wiley, Vol. 23, No. 6 ( 2019-06), p. 3897-3904
    Abstract: Initial functional studies have demonstrated that RNA‐binding motif protein 10 (RBM10) can promote apoptosis and suppress cell proliferation; however, the results of several studies suggest a tumour‐promoting role for RBM10. Herein, we assessed the involvement of RBM10 in lung adenocarcinoma cell proliferation and explored the potential molecular mechanism. We found that, both in vitro and in vivo, RBM10 overexpression suppresses lung adenocarcinoma cell proliferation, while its knockdown enhances cell proliferation. Using complementary DNA microarray analysis, we previously found that RBM10 overexpression induces significant down‐regulation of RAP1A expression. In this study, we have confirmed that RBM10 decreases the activation of RAP1 and found that EPAC stimulation and inhibition can abolish the effects of RBM10 knockdown and overexpression, respectively, and regulate cell growth. This effect of RBM10 on proliferation was independent of the MAPK/ERK and P38/MAPK signalling pathways. We found that RBM10 reduces the phosphorylation of CREB via the AKT signalling pathway, suggesting that RBM10 exhibits its effect on lung adenocarcinoma cell proliferation via the RAP1/AKT/CREB signalling pathway.
    Type of Medium: Online Resource
    ISSN: 1582-1838 , 1582-4934
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2076114-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-07-08)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-07-08)
    Abstract: In order to explore the role of exosomal circRNAs in the occurrence and development of sepsis, we looked for potential diagnostic markers to accurately identify sepsis and to lay a molecular basis for precise treatment. Ultracentrifugation was used to extract exosomes from the serum of patients with sepsis and healthy individuals. Then, changes in circRNA expression in exosomes were studied by circRNA microarray analysis. Gene ontology (GO) analysis and Kyoto City Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used to annotate the biological functions and pathways of genes, and a circRNA-miRNA-mRNA regulatory network was constructed. In the microarray analysis, 132 circRNAs were significantly differentially expressed, including 80 and 52 that were upregulated and downregulated, respectively. RT-qPCR verified the results of microarray analysis: hsa_circRNA_104484 and hsa_circRNA_104670 were upregulated in sepsis serum exosomes. ROC analysis showed that hsa_circRNA_104484 and hsa_circRNA_104670 in serum exosomes have the potential to be used as diagnostic markers for sepsis. The circRNA-miRNA-mRNA network predicted the potential regulatory pathways of differentially expressed circRNAs. There are differences in the expression of circRNA in serum exosomes between patients with sepsis and healthy individuals, which may be involved in the occurrence and development of the disease. Among them, elevations in hsa_circRNA_104484 and hsa_circRNA_104670 could be used as novel diagnostic biomarkers and molecular therapeutic targets.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: CNS Neuroscience & Therapeutics, Wiley, Vol. 26, No. 12 ( 2020-12), p. 1219-1229
    Abstract: Demyelination occurs in response to brain injury and is observed in many neurodegenerative diseases. Myelin is synthesized from oligodendrocytes in the central nervous system, and oligodendrocyte death‐induced demyelination is one of the mechanisms involved in white matter damage after stroke and neurodegeneration. Oligodendrocyte precursor cells (OPCs) exist in the brain of normal adults, and their differentiation into mature oligodendrocytes play a central role in remyelination. Although the differentiation and maturity of OPCs drive endogenous efforts for remyelination, the failure of axons to remyelinate is still the biggest obstacle to brain repair after injury or diseases. In recent years, studies have made attempts to promote remyelination after brain injury and disease, but its cellular or molecular mechanism is not yet fully understood. In this review, we discuss recent studies examining the demyelination process and potential therapeutic strategies for remyelination in aging and stroke. Based on our current understanding of the cellular and molecular mechanisms underlying remyelination, we hypothesize that myelin and oligodendrocytes are viable therapeutic targets to mitigate brain injury and to treat demyelinating‐related neurodegeneration diseases.
    Type of Medium: Online Resource
    ISSN: 1755-5930 , 1755-5949
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2423467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    International Scientific Information, Inc. ; 2020
    In:  Medical Science Monitor Vol. 26 ( 2020-05-28)
    In: Medical Science Monitor, International Scientific Information, Inc., Vol. 26 ( 2020-05-28)
    Type of Medium: Online Resource
    ISSN: 1643-3750
    Language: English
    Publisher: International Scientific Information, Inc.
    Publication Date: 2020
    detail.hit.zdb_id: 2060401-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Oncology Vol. 9 ( 2019-5-14)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 9 ( 2019-5-14)
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  CNS Neuroscience & Therapeutics Vol. 27, No. 5 ( 2021-05), p. 528-539
    In: CNS Neuroscience & Therapeutics, Wiley, Vol. 27, No. 5 ( 2021-05), p. 528-539
    Abstract: Microglia are important phagocytes of the central nervous system (CNS). They play an important role in protecting the CNS by clearing necrotic tissue and apoptotic cells in many CNS diseases. However, recent studies have found that microglia can phagocytose parts of neurons excessively, such as the neuronal cell body, synapse, or myelin sheaths, before or after the onset of CNS diseases, leading to aggravated injury and impaired tissue repair. Meanwhile, reduced phagocytosis of synapses and myelin results in abnormal circuit connections and inhibition of remyelination, respectively. Previous studies focused primarily on the positive effects of microglia phagocytosis, whereas only a few studies have focused on the negative effects. In this review, we use the term "pathological microglial phagocytosis" to refer to excessive or reduced phagocytosis by microglia that leads to structural or functional abnormalities in target cells and brain tissue. The classification of pathological microglial phagocytosis, the composition, and activation of related signaling pathways, as well as the process of pathological phagocytosis in various kinds of CNS diseases, are described in this review. We hypothesize that pathological microglial phagocytosis leads to aggravation of tissue damage and negative functional outcome. For example, excessive microglial phagocytosis of synapses can be observed in Alzheimer's disease and schizophrenia, leading to significant synapse loss and memory impairment. In Parkinson's disease, ischemic stroke, and traumatic brain injury, excessive microglial phagocytosis of neuronal cell bodies causes impaired gray matter recovery and sensory dysfunction. We therefore believe that more studies should focus on the mechanism of pathological microglial phagocytosis and activation to uncover potential targets of therapeutic intervention.
    Type of Medium: Online Resource
    ISSN: 1755-5930 , 1755-5949
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2423467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Cellular and Molecular Life Sciences Vol. 79, No. 8 ( 2022-08)
    In: Cellular and Molecular Life Sciences, Springer Science and Business Media LLC, Vol. 79, No. 8 ( 2022-08)
    Abstract: Previous studies suggested that anti-inflammatory microglia/macrophages (Mi/MΦ) play a role in “normal phagocytosis,” which promoted the rapid clearance of necrotic substances and apoptotic cells. More recently, a few studies have found that Mi/MΦ also play a role in “pathological phagocytosis” in the form of excessive or reduced phagocytosis, thereby worsening damage induced by CNS diseases. However, the underlying mechanisms and the Mi/MΦ subtypes related to this pathological phagocytosis are still unknown. Salt-inducible kinase 3 (SIK3), a member of the 5’ adenosine monophosphate-activated protein kinase (AMPK) family, has been shown to regulate inflammation in several peripheral diseases. Whether SIK3 also regulates the inflammatory response in CNS diseases is currently unknown. Therefore, in this study, we created a transgenic tamoxifen-induced Mi/MΦ-specific SIK3 conditional knockout (SIK3-cKO) mouse to examine SIK3’s role in phagocytotic function induced by transient focal cerebral ischemia (tFCI). By single-cell RNA-seq, we found the pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function, but the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. We found that SIK3-cKO caused Mi/MΦ heterogenization from the transitional phenotype to the anti-inflammatory phenotype after tFCI. This phenotypic shift corresponded with enhanced phagocytosis of both apoptotic and live neurons. Interestingly, SIK3-cKO enhanced normal phagocytosis of myelin debris but attenuating excessive phagocytosis of non-damaged myelin sheath, thereby protecting white matter integrity after tFCI. CD16, a pro-inflammation marker, was decreased significantly by SIK3-cKO and correlated with “excessive phagocytosis.” SIK3-cKO promoted long-term recovery of white matter function and neurological function as assessed with electrophysiological compound action potential (CAPs) and behavioral analysis. This study is the first to show a role of SIK3 in Mi/MΦ phagocytosis in CNS diseases, and reveals that promoting Mi/MΦ anti-inflammatory heterogenization inhibits “excessive phagocytosis” of live cells and facilitates “normal phagocytosis” of apoptotic cells. Therefore, inhibition of SIK3 in Mi/MΦ may be a potential therapeutic target in stroke and other CNS diseases with accompanying white matter destruction. Graphical abstract In the acute stage of tFCI, Mi/MΦ polarized into different phenotypes. The pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function. In contrast, the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. After tFCI, SIK3-cKO promoted anti-inflammatory phenotypic heterogenization of Mi/MΦ. SIK3-cKO promoted Mi/MΦ phagocytosis of apoptotic (normal phagocytosis) and living neuronal cell bodies (excessive phagocytosis) in gray matter. Interestingly, SIK3-cKO specifically increased normal phagocytosis of myelin debris concurrent with an attenuation of excessive phagocytosis of myelin sheath in white matter. These changes induced by SIK3-cKO were associated with protection of white matter integrity and long-term neurofunctional recovery after tFCI.
    Type of Medium: Online Resource
    ISSN: 1420-682X , 1420-9071
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1458497-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...