GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Optica Publishing Group  (5)
  • Wang, Kai  (5)
Material
Publisher
  • Optica Publishing Group  (5)
Language
Years
  • 1
    Online Resource
    Online Resource
    Optica Publishing Group ; 2020
    In:  Optics Express Vol. 28, No. 8 ( 2020-04-13), p. 11538-
    In: Optics Express, Optica Publishing Group, Vol. 28, No. 8 ( 2020-04-13), p. 11538-
    Abstract: High-dimensional entangled states and quantum repeaters are important elements in efficient long-range quantum communications. The high-dimensional property associated with the orbital angular momentum (OAM) of each photon improves the bandwidth of the quantum communication network. However, the generation of high-dimensional entangled states by the concentration method reduces the brightness of the entangled light source, making extensions to these higher dimensions difficult. To overcome this difficulty, we propose to generate entangled qutrits in the OAM space by loading the pump light with OAM. Compared with the concentration method, our experimental results show that the rate of generation of photon pairs improves significantly with an observed 5.5-fold increase. The increased generation rate provides the system with the ability to resist the noise and improve the fidelity of the state. The S value of the Clauser–Horne–Shimony–Holt inequality increases from 2.48 ± 0.07 to 2.69 ± 0.04 under the same background noise, and the fidelity of the reconstructed density matrix improves from 57.8 ± 0.14% to 70 ± 0.17%. These achievements exhibit the enormous advantages of high-dimensional entanglement generation.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2020
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: OSA Continuum, Optica Publishing Group, Vol. 2, No. 7 ( 2019-07-15), p. 2260-
    Type of Medium: Online Resource
    ISSN: 2578-7519
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2019
    detail.hit.zdb_id: 2944048-8
    detail.hit.zdb_id: 3143831-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Optics Express Vol. 30, No. 5 ( 2022-02-28), p. 7566-
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 5 ( 2022-02-28), p. 7566-
    Abstract: Directional emission source is one of the key components for multiple-view three-dimensional display. It is hard to achieve high efficiency and large deflection angle direction sources via geometric optics due to the weak confinement of light. The metasurface especially metagrating provides a promising method to control light effectively. However, the conventional forward design methods for metasurface are inherently limited by insufficient control of Bloch modes, which causes a significant efficiency drop at a large deflection angle. Here, we obtained high efficiency large deflection angle metagratings by realizing the constructive interferences among the propagation Bloch modes and enhancing the outcoupling effect at the desired diffraction order. The grating structures that support the coupling of Bloch modes were designed by an inverse design method for different incident wavelengths, and the total phase response of a supercell can be tailored. For a red (620 nm) incident light, the theoretical deflection efficiency of a silicon metagrating can be higher than 80% from 30° to 80°. The experimental deflection efficiency can achieve 86.43% for a 75° deflection metagrating. The matched simulation and experimental results strongly support the reliability of developed algorithm. Our inverse design approach could be extended to the green (530 nm) and blue (460 nm) incident light with titanium dioxide metagratings, with theoretical deflection efficiency of over 80% in a large deflection angle range of 30° to 80°. Considering the multiple visible wavelength deflection capability, the developed algorithm can be potentially applied for full color three-dimensional display, and other functional metagrating devices based on different dielectric materials.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 22 ( 2021-10-25), p. 36964-
    Abstract: The mechanisms for energy transfer including Förster resonance energy transfer (FRET) and radiative energy transfer in ternary-emissive system consists of blended-quantum dots (QDs, red-QDs blended with blue-QDs) emissive layer (EML) and blue-emissive hole-transport material that contained in quantum dot light-emitting diodes (QLEDs) are complicated. As the energy transfer could exhibit either positive or negative impact on QD’s photoluminescence (PL) and electroluminescence (EL), it is important to analyze and modulate energy transfer in such ternary-emissive system to obtain high-efficiency QLEDs. In this work, we have demonstrated that proper B-QDs doping has a positive impact on R-QDs’ PL and EL, where these improvements were attributed to the B-QDs’ spacing effect on R-QDs which weakens homogeneous FRET among R-QDs and near 100% efficient heterogeneous FRET from B-QDs to R-QDs. With optimization based on the analysis of energy transfer, the PL quantum yield of blended-QDs (with R:B blending ratio of 90:10, in quality) film has been enhanced by 35% compared with that of unblended R-QDs film. Moreover, thanks to the spacing effect and high-efficiency FRET from B-QDs to R-QDs, the external quantum efficiency of QLEDs that integrate optimized blended-QDs (R:B=90:10) EML reaches 22.1%, which is 15% higher than that of the control sample (19.2%) with unblended R-QDs EML. This work provides a systematically analytical method to study the energy transfer in ternary-emissive system, and gives a valid reference for the analysis and development of the emerging QLEDs that with blended-QDs EML.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Optica Publishing Group ; 2014
    In:  Optics Express Vol. 22, No. 15 ( 2014-07-28), p. 18668-
    In: Optics Express, Optica Publishing Group, Vol. 22, No. 15 ( 2014-07-28), p. 18668-
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2014
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...