GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Oxford University Press (OUP)  (6)
Materialart
Verlag/Herausgeber
  • Oxford University Press (OUP)  (6)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2020
    In:  Journal of Experimental Botany Vol. 71, No. 1 ( 2020-01-01), p. 204-218
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 71, No. 1 ( 2020-01-01), p. 204-218
    Kurzfassung: Meiotic recombination plays a central role in maintaining genome stability and increasing genetic diversity. Although meiotic progression and core components are widely conserved across kingdoms, significant differences remain among species. Here we identify a rice gene ABERRANT GAMETOGENESIS 1 (AGG1) that controls both male and female gametogenesis. Cytological and immunostaining analysis showed that in the osagg1 mutant the early recombination processes and synapsis occurred normally, but the chiasma number was dramatically reduced. Moreover, OsAGG1 was found to interact with ZMM proteins OsHEI10, OsZIP4, and OsMSH5. These results suggested that OsAGG1 plays an important role in crossover formation. Phylogenetic analysis showed that OsAGG1 is a plant-specific protein with a highly conserved N-terminal region. Further genetic and protein interaction analyses revealed that the conserved N-terminus was essential for the function of the OsAGG1 protein. Overall, our work demonstrates that OsAGG1 is a novel and critical component in rice meiotic crossover formation, expanding our understanding of meiotic progression. This study identified a plant-specific gene ABERRANT GAMETOGENESIS 1 that is required for meiotic crossover formation in rice. The conserved N-terminus of the AGG1 protein was found to be essential for its function.
    Materialart: Online-Ressource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2020
    ZDB Id: 1466717-4
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: The Plant Cell, Oxford University Press (OUP), Vol. 26, No. 7 ( 2014-08-26), p. 2831-2842
    Kurzfassung: Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean.
    Materialart: Online-Ressource
    ISSN: 1532-298X , 1040-4651
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2014
    ZDB Id: 623171-8
    ZDB Id: 2004373-9
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2022
    In:  Nucleic Acids Research Vol. 50, No. D1 ( 2022-01-07), p. D1324-D1333
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 50, No. D1 ( 2022-01-07), p. D1324-D1333
    Kurzfassung: Natural product (NP) has a long history in promoting modern drug discovery, which has derived or inspired a large number of currently prescribed drugs. Recently, the NPs have emerged as the ideal candidates to combine with other therapeutic strategies to deal with the persistent challenge of conventional therapy, and the molecular regulation mechanism underlying these combinations is crucial for the related communities. Thus, it is urgently demanded to comprehensively provide the disease-specific molecular regulation data for various NP-based drug combinations. However, no database has been developed yet to describe such valuable information. In this study, a newly developed database entitled ‘Natural Product-based Drug Combination and Its Disease-specific Molecular Regulation (NPCDR)’ was thus introduced. This database was unique in (a) providing the comprehensive information of NP-based drug combinations & describing their clinically or experimentally validated therapeutic effect, (b) giving the disease-specific molecular regulation data for a number of NP-based drug combinations, (c) fully referencing all NPs, drugs, regulated molecules/pathways by cross-linking them to the available databases describing their biological or pharmaceutical characteristics. Therefore, NPCDR is expected to have great implications for the future practice of network pharmacology, medical biochemistry, drug design, and medicinal chemistry. This database is now freely accessible without any login requirement at both official (https://idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/) sites.
    Materialart: Online-Ressource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 1472175-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2016
    In:  Geophysical Journal International Vol. 204, No. 2 ( 2016-02-01), p. 1072-1085
    In: Geophysical Journal International, Oxford University Press (OUP), Vol. 204, No. 2 ( 2016-02-01), p. 1072-1085
    Materialart: Online-Ressource
    ISSN: 0956-540X , 1365-246X
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2016
    ZDB Id: 3042-9
    ZDB Id: 2006420-2
    ZDB Id: 1002799-3
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2022
    In:  Nucleic Acids Research Vol. 50, No. D1 ( 2022-01-07), p. D560-D570
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 50, No. D1 ( 2022-01-07), p. D560-D570
    Kurzfassung: The success of protein engineering and design has extensively expanded the protein space, which presents a promising strategy for creating next-generation proteins of diverse functions. Among these proteins, the synthetic binding proteins (SBPs) are smaller, more stable, less immunogenic, and better of tissue penetration than others, which make the SBP-related data attracting extensive interest from worldwide scientists. However, no database has been developed to systematically provide the valuable information of SBPs yet. In this study, a database named ‘Synthetic Binding Proteins for Research, Diagnosis, and Therapy (SYNBIP)’ was thus introduced. This database is unique in (a) comprehensively describing thousands of SBPs from the perspectives of scaffolds, biophysical & functional properties, etc.; (b) panoramically illustrating the binding targets & the broad application of each SBP and (c) enabling a similarity search against the sequences of all SBPs and their binding targets. Since SBP is a human-made protein that has not been found in nature, the discovery of novel SBPs relied heavily on experimental protein engineering and could be greatly facilitated by in-silico studies (such as AI and computational modeling). Thus, the data provided in SYNBIP could lay a solid foundation for the future development of novel SBPs. The SYNBIP is accessible without login requirement at both official (https://idrblab.org/synbip/) and mirror (http://synbip.idrblab.net/) sites.
    Materialart: Online-Ressource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 1472175-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Journal of Pharmacy and Pharmacology, Oxford University Press (OUP), Vol. 75, No. 5 ( 2023-04-17), p. 612-624
    Kurzfassung: Limonin has received significant attention due to its multiple biological effects, intervertebral disc degeneration (IDD) is also of interest due to the high prevalence of this disease. In this study, we determined the effects of limonin on IDD and the underlying mechanism of action to find novel ways to treat IDD. Methods An IL-1β-induced cell inflammation model and a lumbar instability model inducing IDD were established to assess the progression of IDD with or without limonin treatment. We further evaluated MAPK/NF-κB and necroptosis pathways and alterations in the extracellular matrix specific within the disc. Key findings Limonin suppresses inflammation in the nucleus pulposus in vitro by reducing the production of pro-inflammatory markers such as iNOS and COX-2. Limonin reduced the activation of the MAPK/NF-κB signalling pathway and the RIP1/RIP3/MLKL necroptosis pathway in the NP cells. Moreover, limonin delays the IDD progression in the lumbar instability model. Conclusions Limonin could potentially delay IDD by inhibiting NP cell necroptosis and modulating peripheral matrix proteins within the intervertebral disc and is a potential pharmacological research direction for the therapy in patients with IDD.
    Materialart: Online-Ressource
    ISSN: 0022-3573 , 2042-7158
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2023
    ZDB Id: 2041988-0
    ZDB Id: 2050532-2
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...