GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (6)
  • Wang, Hui  (6)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (6)
Language
Years
Subjects(RVK)
  • 1
    In: HemaSphere, Ovid Technologies (Wolters Kluwer Health), Vol. 7, No. S3 ( 2023-08), p. e8253193-
    Type of Medium: Online Resource
    ISSN: 2572-9241
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2922183-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 96, No. 46 ( 2017-11), p. e8715-
    Type of Medium: Online Resource
    ISSN: 0025-7974
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 2049818-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2015
    In:  Circulation Research Vol. 117, No. suppl_1 ( 2015-07-17)
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 117, No. suppl_1 ( 2015-07-17)
    Abstract: Objective: Sepsis induced cardiac dysfunction is featured by inflammation and metabolic repression. miR-155 is a typical multifunctional miRNA and loss of miR-155 has been shown to protect the heart from pathological cardiac hypertrophy while increased miR-155 could promote the formation of foam cell in atherogenesis. However, the role of miR-155 in sepsis induced cardiac dysfunction is unclear. Methods: E.coli lipopolysaccharide (LPS) (5mg/kg) was administered to C57BL/6 mice to create a sepsis-induced cardiac dysfunction model. Cardiac function was assessed by echocardiography 5-6 h post-LPS administration. Heart tissues were collected within 7-9 h after LPS treatment for the analysis of gene expressions. Tail vein injection of miR-155 antagomir (80mg/kg/d) or miR-155 agomirs (30mg/kg/d) for 3 consecutive days were used to decrease or increase miR-155 expressions in heart. Results: LPS induced a reduction of 15% in fractional shortening (%FS) and 25% in ejection fraction (%EF). Expression of miR-155 was increased by 2 fold in sepsis-induced cardiac dysfunction mouse model. Over-expression of miR-155 agomirs led to a decrease of 5% in FS and 10% in EF as compared to scramble controls. Aggravation of LPS induced cardiac dysfunction by miR-155 agomir was not associated with alteration in inflammation or cardiac metabolism. However, miR-155 agomir increased LPS- induced myocardium apoptosis and also elevated the ratio of Bax/Bcl-2 at the protein level. Intravenous injection of cholesterol-modified antisense oligonucleorides antagomirs of miR-155 markedly rescued the LPS induced heart failure and apoptosis. Western bloting indicated that miR-155 overexpression in vivo led to a significant inhibition of Pea15a while miR-155 knock-down caused a significant upregulation of Pea15a, indicating that Pea15a was a potential target gene of miR-155. Interestingly, plasma miR-155 levels were also found to be significantly increased in critically ill patients with sepsis compared to healthy controls. Conclusion: This study demonstrates that miR-155 regulates sepsis induced cardiac dysfunction and Pea15a is a potential targer gene of miR-155. Loss of miR-155 represents a novel therapeutic method for sepsis induced cardiac dysfunction
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2015
    In:  Circulation Research Vol. 117, No. suppl_1 ( 2015-07-17)
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 117, No. suppl_1 ( 2015-07-17)
    Abstract: Background: Sepsis-induced cardiac dysfunction is charactered by cardiac contractility dysfunction, myocardial inflammation and cardiac metabolism abnormal. Dysfunction of microRNAs (miRNAs, miRs) contributes to a variety of human diseases. However, their roles in sepsis-induced cardiac dysfunction are unclear. Methods and Results: Cardiac dysfunction was induced by E.coli lipopolysaccharide (LPS) administration in mice and 8 dysregulated miRNAs were identified by miRNA arrays. Among them, miR-21* was found to be increased most obviously as determined by quantitative reverse transcription polymerase chain reactions. Inhibition of miR-21* in vivo by antagomir attenuated the reduction of factional shortening (FS) and ejection fraction (EF) induced by LPS administration while forced over-expression of miR-21* in vivo by agomir accelerated LPS-induced cardiac dysfunction. Besides that, S100A8 and S100A9, two genes related to cardiac contractility were also found to be regulated in vivo by injection of miR-21* agomirs and antagomirs. Interestingly, cardiac inflammation indictors such as TNF-α and IL-6 and cardiac metabolism regulators including PPAR family, CD36, FATP, GLUT1, GLUT4, PDK4 were not changed by miR-21* in vivo. These data indicate that miR-21* controls sepsis-induced cardiac dysfunction by direct affecting cardiac contractility instead of cardiac inflammation and metabolism. SORBS2 was identified as a target gene of miR-21* and it was decreased by miR-21* agomir and increased by miR-21* antagomir in vivo. In consist with this, circulating levels of miR-21* were also increased in patients with sepsis compared with healthy controls. Conclusion: miR-21* controls sepsis-induced cardiac dysfunction by regulating SORBS2. Inhibition of miR-21* represents a novel therapeutic strategy for sepsis-induced cardiac dysfunction.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2015
    In:  Circulation Research Vol. 117, No. suppl_1 ( 2015-07-17)
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 117, No. suppl_1 ( 2015-07-17)
    Abstract: Backgroud: MicroRNAs (miRNAs, miRs) are a class of endogenous non-codingRNAs, participating in a variety of essential biological processes including development, differentiation, proliferation and apoptosis. Rodents have the capacity to regenerate their hearts in response to injury while the capacity would be lost 7 day after birth, suggesting that mammals gradually lose their regenerative potential during postnatal development. The roles of miRNAs in regulating cardiomyocyte proliferation in postnatal hearts are largely unclear. Methods and Results: Cardiomyocytes were isolated from rat at day 0 and day 10. Agilent rat miRNA arrays were performed to determine the dysregulated miRNAs in cardiomyocytes between day 0 and day 10. A total of 32 miRNAs were found to be dysregulated between day 0 and day 10 (Fold change over 2 and P values less than 0.05). As determined by quantitative reverse transcription polymerase chain reactions and functional assays using EdU staining and Ki-67 staining, miR-31a-5p was found to be able to promote neonatal cardiomyocyte proliferation. Moreover, the expression of proliferation maker- Proliferating Cell Nuclear Antigen (PCNA) was also increased in cardiomyocytes transfected with miR-31a-5p mimics as determined by PCRs and Western blotting analysis. Tumor suppressor RhoBTB1 was found to be negatively regulated by miR-31a-5p in cardiomyocytes and also was responsible for the pro-proliferation effects of miR-31a-5p in neonatal cardiomyocytes. Conclusions: These studies demonstrate that miR-31a-5p regulates cardiomyocytes proliferation in postnatal hearts by targeting RhoBTB1. miR-31a-5p represents a therapeutic target for cardiac repair and regeneration.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2015
    In:  Circulation Research Vol. 117, No. suppl_1 ( 2015-07-17)
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 117, No. suppl_1 ( 2015-07-17)
    Abstract: Background/Aims: Diabetic cardiomyopathy (DCM) represents the major cause of morbidity and mortality among diabetics. Exercise has been reported to be effective to protect the heart from cardiac injury during the development of DCM. However, the potential cardioprotective effect of exercise in advanced DCM remains unclear. Methods: Seven-week old male C57BL/6 wild-type or db/db mice were either subjected to a running exercise program for 15 weeks or kept sedentary. Cardiac function, myocardial apoptosis and fibrosis, and mitochondrial biogenesis were examined for evaluation of cardiac injury. Results: A reduction in ejection fraction and fractional shortening in db/db mice was significantly reversed by exercise training. DCM induced remarkable cardiomyocyte apoptosis and increased ratio of Bax/Bcl-2 at the protein level. Meanwhile, DCM caused slightly myocardial fibrosis with elevated mRNA levels of collagen I and collagen III. Also, DCM resulted in a reduction of mitochondrial DNA (mtDNA) replication and transcription, together with reduced mtDNA content and impaired mitochondrial ultrastructure. All of these changes could be abolished by exercise training. Furthermore, DCM-associated inhibition of PGC-1α and Akt signaling was significantly activated by exercise, indicating that exercise-induced activation of PGC-1α and Akt signaling might be responsible for mediating cardioprotective effect of exercise in DCM. Conclusion: Exercise preserves cardiac function, prevents myocardial apoptosis and fibrosis, and improves mitochondrial biogenesis in the late stage of DCM. Exercise-induced activation of PGC-1α and Akt signaling might be promising therapeutic targets for advanced DCM.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...