GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 3 ( 2022-01-31), p. 3913-
    Abstract: It is known that a twisted Gaussian Schell-model (TGSM) beam with elliptical Gaussian amplitude will rotate its beam spot upon propagation because of the vortex structure of the transverse energy flux. In this paper, we study a special kind of twisted partially coherent beams named twisted Hermite-Gaussian correlated Schell model (HGCSM) beam whose degree of coherence (DOC) is non-circularly symmetric but the source amplitude is of the circular Gaussian profile. Our results reveal that the beam spot (average intensity distribution) does not rotate during propagation even if the circular symmetry of the beam spot is broken. However, the DOC pattern shows the rotation under propagation. From the investigation of the transverse energy flux and OAM density flux, we attribute the nontrivial rotation phenomenon to the redistribution of the transverse energy flux by non-circular DOC. Furthermore, based on Hyde‘s approach [ J. Opt. Soc. Am. A 37 , 257 ( 2020 ) 10.1364/JOSAA.381772 ], we introduce a method for the generation of this class of twisted partially coherent sources. The non-rotation of the beam spot and rotation of the DOC are demonstrated in experiment.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Optics Express Vol. 30, No. 5 ( 2022-02-28), p. 7511-
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 5 ( 2022-02-28), p. 7511-
    Abstract: We introduce a new type of partially coherent vector beam, named the radially polarized twisted partially coherent vortex (RPTPCV) beam. Such a beam carries the twist phase and the vortex phase simultaneously, and the initial state of polarization (SOP) is radially polarized. On the basis of the pseudo-modal expansion and fast Fourier transform algorithm, the second-order statistics such as the spectral density, the degree of polarization (DOP) and the SOP, propagation through a paraxial ABCD optical system are investigated in detail through numerical examples. The results reveal that the propagation properties of the RPTPCV beam closely depends on the handedness of the twist phase and the vortex phase. When the handedness of the two phases is same, the beam profile is easier to remain a dark hollow shape and the beam spot rotates faster during propagation, compared to the partially coherent vortex beam or the RPTPCV beam with the opposite handedness of the two phases. In addition, the same handedness of two phases resists the coherence induced de-polarization of the beam upon propagation, and the SOP is also closely related to the handedness, topological charge of the vortex phase and the twist factor of the twist phase, providing an efficient way to modulate the beam’s DOP and SOP in the output plane. Moreover, we establish an experiment setup to generate the RPTPCV beam. The average spectral density and the polarization properties are examined in the experiment. The experimental results agree reasonable well with the theoretical predictions. Our results will be useful for particle manipulating, free-space optical communications, and polarization lidar systems.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Photonics Vol. 10, No. 3 ( 2023-03-14), p. 314-
    In: Photonics, MDPI AG, Vol. 10, No. 3 ( 2023-03-14), p. 314-
    Abstract: The twisted Laguerre–Gaussian Schell-model (TLGSM) beam is a novel type of partially coherent beam embedded with both the second-order twist phase and the classical vortex phase. The intriguing properties induced by the interaction of the two types of phases have been demonstrated theoretically quite recently. In this work, we introduce a flexible way to experimentally synthesize a TLGSM beam with controllable twist strength. The protocol relies on the discrete pseudo-mode representation for the cross-spectral density of a TLGSM beam, in which the beam is viewed as an incoherent superposition of a finite number of spatially coherent modes. We show that all these pseudo modes endowed with random phases are mutually uncorrelated and can be encoded into a single frame of a dynamic computer-generated hologram. By sequentially displaying dynamic holograms on a single spatial-light modulator, the controllable TLGSM beam can be synthesized experimentally. The joint effect of the two phases on the propagation and self-reconstruction characteristics of the synthesized beam has also been studied in the experiment.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2024
    In:  PhotoniX Vol. 5, No. 1 ( 2024-04-03)
    In: PhotoniX, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2024-04-03)
    Abstract: Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities. In this work, we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam. By characterizing the beam’s spatial coherence structure with a $$2 \times 2$$ 2 × 2 coherence matrix, we demonstrate independent control over the three components of the coherence Stokes vector. This allows for three-channel optical information encoding and encryption, with applications in color image representation. Unlike existing methods based on fully coherent light modulations, our approach utilizes a two-point dependent coherence Stokes vector, proving resilient to random noise in experimental scenarios. Our findings provide a robust foundation for higher-dimensional optical encoding and encryption, addressing limitations associated with partially coherent light in complex environments.
    Type of Medium: Online Resource
    ISSN: 2662-1991
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 3017005-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Optics Express Vol. 30, No. 10 ( 2022-05-09), p. 16856-
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 10 ( 2022-05-09), p. 16856-
    Abstract: Optical coherence has recently become a degree of freedom to modulate the orbital angular momentum (OAM) flux density of a partially coherent beam during propagation. However, the calculation of the OAM flux density for the partially coherent beam involves partial differential and four-dimensional integral operations, which poses drawbacks for its fast numerical calculations. In this paper, we present an efficient numerical protocol for calculating the OAM flux density of any partially coherent Schell-model beam propagating through a paraxial ABCD optical system by only adopting two-dimensional (2D) Fourier transforms. The general formalism is established in detail for the fast numerical calculation of the OAM flux density. It is found that the operation number in the developed algorithm is independent on the spatial coherence states of the beam. To demonstrate the validity of our algorithm, we calculate the OAM flux density of the partially coherent Laguerre-Gaussian beams during propagation with both the analytical and numerical methods. The obtained results are consistent well with each other. Moreover, the OAM flux density properties of two other classes of Schell-model beams, having no analytical solutions, are investigated as the specific examples. Our method provides a convenient way for studying the correlation-induced OAM density changes for any Schell-model beam propagation through a paraxial optical system.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Optica Publishing Group ; 2019
    In:  Optics Letters Vol. 44, No. 15 ( 2019-08-01), p. 3709-
    In: Optics Letters, Optica Publishing Group, Vol. 44, No. 15 ( 2019-08-01), p. 3709-
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2019
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Journal of the Optical Society of America A Vol. 39, No. 4 ( 2022-04-01), p. 672-
    In: Journal of the Optical Society of America A, Optica Publishing Group, Vol. 39, No. 4 ( 2022-04-01), p. 672-
    Abstract: The correction pointed out by Nemes [ J. Opt. Soc. Am. A 39 , 667 ( 2022 ) JOAOD6 0740-3232 10.1364/JOSAA.435756 ] to our paper [ J. Opt. Soc. Am. A 37 , 89 ( 2020 ) JOAOD6 0740-3232 10.1364/JOSAA.37.000089 ] is welcome. The author claims that the beam propagation factors M x 2 , M y 2 are inadequate to characterize twisted elliptical multi-Gaussian Schell-model (TEMGSM) beams, which are introduced in our paper. Further, the author points out that there are two pairs of independent, normalized invariants to classify the TEMGSM beams. In this reply, we present the numerical example of the normalized intrinsic propagation invariants of the TEMGSM beams.
    Type of Medium: Online Resource
    ISSN: 1084-7529 , 1520-8532
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    SSG: 24,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 11, No. 4 ( 2022-02-25), p. 689-696
    Abstract: Twist phase is a nontrivial second-order phase that only exists in a partially coherent beam. Such twist phase endows the partially coherent beam with orbital angular momentum (OAM) and has unique applications such as in super-resolution imaging. However, the manipulation and the detection of the twist phase are still far from easy tasks in experiment. In this work, we present a flexible approach to generate a famous class of twisted Gaussian Schell-model (TGSM) beam with controllable twist phase by the superposition of the complex field realizations using a single phase-only spatial light modulator. The precise control of the amplitude and phase of the field realizations allows one to manipulate the strength of the twist phase easily. In addition, we show that the twist factor, a key factor that determines the strength of twist phase and the amount of OAM, can be measured by extracting the real part of the complex degree of coherence of the TGSM beam. The experiment is carried out with the help of the generalized Hanbury Brown and Twiss experiment as the generated TGSM beam obeys Gaussian statistics. The flexible control and detection of the twist phase are expected to find applications in coherence and OAM-based ghost imaging.
    Type of Medium: Online Resource
    ISSN: 2192-8614
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2674162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Physics Vol. 9 ( 2021-11-23)
    In: Frontiers in Physics, Frontiers Media SA, Vol. 9 ( 2021-11-23)
    Abstract: We report on a partially coherent power-exponent-phase vortex beam (PC-PEPV), whose spatial coherence is controllable and the initial phase exhibits a periodic power exponential change. The PC-PEPV beam was generated experimentally with various spatial coherence widths, and its propagation properties were studied both numerically and experimentally. By modulating the topological charge (TC) and power order of the PC-PEPV beam, the structure of the vortex beam can be adjusted from circular to elliptic, triangular, quadrangle, and pentagon. When the power order is odd, the PC-PEPV beam with a negative TC can be generated, and the profiles of the PC-PEPV beam can be precisely controlled via adjusting the value of the power order. For the case of high spatial coherence width, the number of the dark cores in the polygonal intensity array of the PC-PEPV beam equals the magnitude of the TC. However, when decreasing the spatial coherence width, the dark cores vanish and the intensity gradually transforms into a polygonal light spot. Fortunately, from the modulus and phase distributions of the cross-spectral density (CSD), both the magnitude and sign of the TC can be determined. In the experiment, the modulus and phase distribution of the CSD are verified by the phase perturbation method. This study has potential applications in beam shaping, micro-particle trapping, and optical tweezers.
    Type of Medium: Online Resource
    ISSN: 2296-424X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2721033-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Frontiers in Physics, Frontiers Media SA, Vol. 10 ( 2022-2-16)
    Abstract: We introduce a novel type of twisted partially coherent beams with a nonconventional correlation function, named the twisted Hermite-Gaussian correlated Schell-model (THGCSM) beam. The condition that a twist phase can be imposed on a partially coherent beam is addressed for Schell-model fields endowed with rectangular symmetry. Further, the analytical formula for the THGCSM beam propagating in free space has been derived with the help of the generalized Collins formula. The propagation properties, such as the spectral density and the spectral degree of coherence (SDOC) of the THGCSM beam, also have been studied in detail by some numerical examples. The numerical results show that the twist phase plays a role in resisting beam splitting, caused by the correlation structure, and induces the rotation of the distribution of the SDOC on propagation. Moreover, it is interesting to find that when the beam carries a twist phase, this will endow the beam the ability to maintain its distribution of the SDOC on propagation and enhance the self -reconstruction capability of the SDOC. Our results may provide new insights into nonconventional partially coherent beams with twisted phase and may be useful in some applications, such as optical communications and information recovery.
    Type of Medium: Online Resource
    ISSN: 2296-424X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2721033-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...