GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (22)
  • Wang, Feng  (22)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Electronics Vol. 10, No. 17 ( 2021-08-26), p. 2067-
    In: Electronics, MDPI AG, Vol. 10, No. 17 ( 2021-08-26), p. 2067-
    Abstract: With the emergence of cloud services based on data centers, demands for bandwidth-intensive applications have increased dramatically, and application services have transferred to a more diversified direction. Management as well as capacity of the backbone network needs further development to catch up with rapidly evolved application demands. Optical network virtualization can facilitate the sharing of physical infrastructure among multiple network applications. Virtual Network Embedding (VNE), the main implementation of network virtualization, determines how to map a virtual network request onto physical substrate. To expand the network capacity, flexible-grid elastic optical networks have been considered as a promising supporting technology for the future infrastructure of the next-generation Internet. However, due to the expense of key enabling equipment for flexible grid optical networks, the brown-field migration from a fixed grid to a flexible grid gave birth to the co-existing fixed/flexible grid. Based on the co-existing fixed/flexible grid optical networks, we investigate the problem of Virtual Optical Network (VON) provisioning, and present a flexible-grid-aware virtual network embedding algorithm to map the virtual networks onto the substrate network. In addition, the performance of the algorithm was evaluated under four different network scenarios. Simulation results show that the proposed algorithm can achieve better performance in all four scenarios.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Foods, MDPI AG, Vol. 11, No. 21 ( 2022-11-04), p. 3513-
    Abstract: Rice (Oryza sativa L.) is a staple food that is consumed worldwide, and hybrid rice has been widely employed in many countries to greatly increase yield. However, the frequency of extreme temperature events is increasing, presenting a serious challenge to rice grain quality. Improving hybrid rice grain quality has become crucial for ensuring consumer acceptance. This study compared the differences in milling quality, appearance quality, and physical and chemical starch properties of rice grains of five restorer lines (the male parent of hybrid rice) when they encountered naturally unfavorable temperatures during the filling period under field conditions. High temperatures (HTs) and low temperatures (LTs) had opposite effects on grain quality, and the effect was correlated with rice variety. Notably, R751, R313, and Yuewangsimiao (YWSM) were shown to be superior restorer lines with good resistance to both HT and LT according to traits such as head rice rate, chalkiness degree, chalky rice rate, amylose content, alkali spreading value, and pasting properties. However, Huazhan and 8XR274 were susceptible to sub-optimal temperatures at the grain-filling stage. Breeding hybrid rice with adverse-temperature-tolerant restorer lines can not only ensure high yield via heterosis but also produce superior grain quality. This could ensure the quantity and taste of rice as a staple food in the future, when extreme temperatures will occur increasingly frequently.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  International Journal of Environmental Research and Public Health Vol. 16, No. 3 ( 2019-01-31), p. 403-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 16, No. 3 ( 2019-01-31), p. 403-
    Abstract: Unintentional injury is the leading cause of childhood death and disability in many countries worldwide. This study aimed to quantify rates and risk factors for childhood unintentional injury in areas of rural China, where many children are left behind by migrant worker parents. We administered a questionnaire to children aged 9 to 15, in 56 schools in five counties in Zhejiang and Guizhou provinces. Of the 3791 respondents, 44% lived with both parents, 23% with one parent, and 33% with neither. Around half the children (47.9%) had suffered at least one unintentional injury in the past year, with burns (26%), animal bites (20%) and mechanical injury (18%) the most common. Left-behind children had no increased risk of unintentional injury, but children living in poorer Guizhou (p = 0.001), of divorced parents (p = 0.02), and less well-educated mothers (p = 0.02) were associated with higher risk. Virtual absence of personal level risk factors highlights the importance of addressing environmental risk to reduce childhood injury. The findings have informed a community-based intervention to reduce injury risk through raising awareness of environmental hazards, and through removal of specific hazards. Importantly, the Chinese government should ensure that known effective interventions are subject to legislation and enforcement.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biomolecules, MDPI AG, Vol. 13, No. 5 ( 2023-04-25), p. 738-
    Abstract: Bacterial RNA polymerases (RNAP) form distinct holoenzymes with different σ factors to initiate diverse gene expression programs. In this study, we report a cryo-EM structure at 2.49 Å of RNA polymerase transcription complex containing a temperature-sensitive bacterial σ factor, σ32 (σ32-RPo). The structure of σ32-RPo reveals key interactions essential for the assembly of E. coli σ32-RNAP holoenzyme and for promoter recognition and unwinding by σ32. Specifically, a weak interaction between σ32 and −35/−10 spacer is mediated by T128 and K130 in σ32. A histidine in σ32, rather than a tryptophan in σ70, acts as a wedge to separate the base pair at the upstream junction of the transcription bubble, highlighting the differential promoter-melting capability of different residue combinations. Structure superimposition revealed relatively different orientations between βFTH and σ4 from other σ-engaged RNAPs and biochemical data suggest that a biased σ4–βFTH configuration may be adopted to modulate binding affinity to promoter so as to orchestrate the recognition and regulation of different promoters. Collectively, these unique structural features advance our understanding of the mechanism of transcription initiation mediated by different σ factors.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2701262-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 18, No. 5 ( 2017-05-05), p. 988-
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Remote Sensing Vol. 14, No. 14 ( 2022-07-18), p. 3450-
    In: Remote Sensing, MDPI AG, Vol. 14, No. 14 ( 2022-07-18), p. 3450-
    Abstract: The generation of topographic classification maps or relative heights from aerial or remote sensing images represents a crucial research tool in remote sensing. On the one hand, from auto-driving, three-dimensional city modeling, road design, and resource statistics to smart cities, each task requires relative height data and classification data of objects. On the other hand, most relative height data acquisition methods currently use multiple images. We find that relative height and geographic classification data can be mutually assisted through data distribution. In recent years, with the rapid development of artificial intelligence technology, it has become possible to estimate the relative height from a single image. It learns implicit mapping relationships in a data-driven manner that may not be explicitly available through mathematical modeling. On this basis, we propose a unified, in-depth learning structure that can generate both estimated relative height maps and semantically segmented maps and perform end-to-end training. Compared with the existing methods, our task is to perform both relative height estimation and semantic segmentation tasks simultaneously. We only need one picture to obtain the corresponding semantically segmented images and relative heights simultaneously. The model’s performance is much better than that of equivalent computational models. We also designed dynamic weights to enable the model to learn relative height estimation and semantic segmentation simultaneously. At the same time, we have conducted good experiments on existing datasets. The experimental results show that the proposed Transformer-based network architecture is suitable for relative height estimation tasks and vastly outperforms other state-of-the-art DL (Deep Learning) methods.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Polymers, MDPI AG, Vol. 10, No. 6 ( 2018-05-23), p. 575-
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Medicine, MDPI AG, Vol. 11, No. 19 ( 2022-10-10), p. 5974-
    Abstract: Age has been found to be the single most significant factor in COVID-19 severity and outcome. However, the age-related severity factors of COVID-19 have not been definitively established. In this study, we detected SARS-CoV-2-specific antibody responses and infectious disease-related blood indicators in 2360 sera from 783 COVID-19 patients, with an age range of 1–92 years. In addition, we recorded the individual information and clinical symptoms of the patients. We found that the IgG responses for S1, N, and ORF3a and the IgM for NSP7 were associated with severe COVID-19 at different ages. The IgM responses for the S-protein peptides S1-113 (aa 673–684) and S2-97 (aa 1262–1273) were associated with severe COVID-19 in patients aged 〈 60. Furthermore, we found that the IgM for S1-113 and NSP7 may play a protective role in patients aged 〈 60 and 〉 80, respectively. Regarding clinical parameters, we analyzed the diagnostic ability of five clinical parameters for severe COVID-19 in six age groups and identified three-target panel, glucose, IL-6, myoglobin, IL-6, and NT proBNP as the appropriate diagnostic markers for severe COVID-19 in patients aged 〈 41, 41–50, 51–60, 61–70, 71–80, and 〉 80, respectively. The age-associated severity factors revealed here will facilitate our understanding of COVID-19 immunity and diagnosis, and eventually provide meaningful information for combating the pandemic.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 7 ( 2023-03-26), p. 6252-
    Abstract: Heat stress caused by rapidly changing climate warming has become a serious threat to crop growth worldwide. Exogenous cytokinin (CK) kinetin (KT) has been shown to have positive effects in improving salt and drought tolerance in plants. However, the mechanism of KT in heat tolerance in rice is poorly understood. Here, we found that exogenously adequate application of KT improved the heat stress tolerance of rice seedlings, with the best effect observed when the application concentration was 10−9 M. In addition, exogenous application of 10−9 M KT promoted the expression of CK-responsive OsRR genes, reduced membrane damage and reactive oxygen species (ROS) accumulation in rice, and increased the activity of antioxidant enzymes. Meanwhile, exogenous 10−9 M KT treatment significantly enhanced the expression of antioxidant enzymes, heat activation, and defense-related genes. In conclusion, exogenous KT treatment regulates heat tolerance in rice seedlings by modulating the dynamic balance of ROS in plants under heat stress.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Applied Sciences, MDPI AG, Vol. 13, No. 18 ( 2023-09-20), p. 10487-
    Abstract: The CFETR multi-purpose overload robot (CMOR) is a key subsystem of the remote handling system of the China fusion engineering test reactor (CFETR). This paper first establishes the kinematic and dynamic models of CMOR and analyzes the working process in the vacuum chamber. Based on the uncertainty of rigid-flexible coupling, a CMOR adaptive robust sliding mode controller (ARSMC) is designed based on the Hamilton-Jacobi equation to enhance the robustness of the control system. In addition, to compensate the influence of non-geometric factors on position accuracy, an error compensation method is designed. Based on the matrix differentiation method, the CMOR coupling parameter errors are decoupled, and then the gridded workspace principle is used to identify the parameter errors and improve the motion control accuracy. Finally, the CMOR rigid-flexible coupling simulation system is established by ADAMS-MATLAB/Simulink to analyze the dynamic control effect of ARSMC. The simulation results show that the CMOR end position error exceeds 0.1 m for single joint motion. The average value of CMOR end position error is less than 0.025 m after compensation, and the absolute error value is reduced by 4 times, improves the dynamic control accuracy of CMOR.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...