GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biomedicines, MDPI AG, Vol. 10, No. 7 ( 2022-06-28), p. 1530-
    Abstract: Hematopoietic stem cell transplantation (HSCT) is a curative post-remission treatment in patients with acute myeloid leukemia (AML), but relapse after transplant is still a challenging event. In recent year, several studies have investigated the molecular minimal residual disease (qPCR-MRD) as a predictor of relapse, but the lack of standardized protocols, cut-offs, and timepoints, especially in the pediatric setting, has prevented its use in several settings, including before HSCT. Here, we propose the first collaborative retrospective I-BFM-AML study assessing qPCR-MRD values in pretransplant bone marrow samples of 112 patients with a diagnosis of AML harboring t(8;21)(q22; q22)RUNX1::RUNX1T1, or inv(16)(p13q22)CBFB::MYH11, or t(9;11)(p21;q23)KMT2A::MLLT3, or FLT3-ITD genetic markers. We calculated an ROC cut-off of 2.1 × 10−4 that revealed significantly increased OS (83.7% versus 57.1%) and EFS (80.2% versus 52.9%) for those patients with lower qPCR-MRD values. Then, we partitioned patients into three qPCR-MRD groups by combining two different thresholds, 2.1 × 10−4 and one lower cut-off of 1 × 10−2, and stratified patients into low-, intermediate-, and high-risk groups. We found that the 5-year OS (83.7%, 68.6%, and 39.2%, respectively) and relapse-free survival (89.2%, 73.9%, and 67.9%, respectively) were significantly different independent of the genetic lesion, conditioning regimen, donor, and stem cell source. These data support the PCR-based approach playing a clinical relevance in AML transplant management.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 6326-6327
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 38-39
    Abstract: Acute myeloid leukemia (AML) is a heterogeneous disease where selected subgroups of patients, linked by the presence of biological and clinical high-risk features, are candidates to receive allogenic hematopoietic stem cell transplantation HSCT) as post-remission consolidation treatment. The achievement of morphological complete remission (CR) before HSCT is an important pre-requisite to optimize the chance of successful post-transplant outcome. Minimal residual disease (MRD) assessment by quantitative polymerase chain reaction (q-PCR) has been shown to increase the ability to monitor therapy response in AML, improving prognostic accuracy and allowing to refine transplant strategies. Although MRD assessment was shown to have potential benefit when measured after induction and consolidation therapy courses, its role before HSCT remains to be fully elucidated. In order to contribute to better clarify this issue, we conducted a q-PCR I-BFM-AML collaborative study to measure MRD in bone marrow samples collected within 5 weeks prior to HSCT of 108 pediatric AML patients harboring one of the main recurrent AML aberrancies t(8;21)(q22;q22); RUNX1-RUNX1T1, inv(16)(p13.1q22)/t(16;16)(p13.1;q22); CBFB-MYH11, t(9;11)(p22;q23); KMT2A-MLLT3 or FLT3-ITD. Sixty patients underwent HSCT in first complete remission (CR1) with an overall survival (OS) of 84% versus 54% for the 48 transplanted in CR2 achieved after an initial relapse. Sixty patients showed q-MRD negativity (defined as a value lower than 2.1x10-4 calculated by ROC curve analysis with respect to diagnosis or relapse), whereas in 48 patients we detected q-MRD levels & gt;2.1x10-4. Five-year OS after HSCT was 83% for patients with q-MRD negativity, while that of patients with q-MRD above the cutoff was 57% (p=0.012). As regards, cumulative incidence of relapse (CIR), q-MRD above the cutoff was associated with a high risk of recurrence (26% versus 10% for patients with q-MRD & lt;2.1x10-4, p=0.036), q-MRD positivity representing an independent prognostic factor. When we interrogated the 3 genetic subgroups (namely CBFr, KMT2Ar and FLT3-ITD), despite the limited sample size, we found that OS was significantly influenced by q-MRD pre-HSCT in FLT3-ITD (63% versus 100% for q-MRD negative patients, p=0.019) and in t(8;21)RUNX1-RUNX1T1 rearranged patients (50 % versus 84% for q-MRD negative patients, p=0.048). We further investigated the impact of higher levels of q-MRD: we found that the 17 patients showing a pre-transplant q-MRD reduction lower than 1x10-2 (2-log), with respect to either diagnosis or relapse value, had a worse outcome (OS=39%) when compared to the 91 patients who reduced q-MRD values more than 2-log (OS=78%, p=0.0019). These 17 patients, transplanted in CR1 (n=8) or CR2 (n=9), were heterogeneous in terms of genetic lesions (t(8;21) n=7, inv(16) n=2, t(9;11) n=5 and FLT3-ITD n=3). Applying this 2-log cutoff by genetic subgroups, we found that cases with RUNX1-RUNX1T1 with q-MRD reduction above 2-log had the worst prognosis (OS 29% for q-MRD & gt;2-log versus 73% for q-MRD & lt;2-log, p=0.016). Overall, cases with FLT3-ITD, KMT2A-MLLT3 or CBFB-MYH11 more often achieved a q-MRD reduction greater than 2-log. In line with these results we combined the two measurement approaches and proposed a model where the two cutoffs generate 3 risk groups stratification, namely low (q-MRD & lt;2.1x10-4, LR), intermediate (q-MRD & gt;2.1x10-4 and & lt;2-log, IR) or high risk (q-MRD & gt;2-log, HR). This combined stratification by q-MRD resulted into a better subdivision of the OS probability, which was 83%, 69% and 39% for LR, IR and HR respectively (p=0.004). Finally, a multivariate Cox regression model revealed that, together with CR status at time of the allograft (CR2, hazard ratio 4.4, p=0.001), q-MRD was an independent factor (hazard ratio 0.5, p=0.001) predicting HSCT outcome. In conclusion, this study supports the role of q-MRD pre-HSCT as a useful prognostic tool in childhood AML, able to provide information to tailor transplant strategies involving conditioning regimen intensity and graft-versus-host disease prophylaxis. Disclosures Reinhardt: AbbVie: Consultancy; Novartis: Consultancy, Other: Institutional Research Funding; Jazz: Consultancy, Other: Institutional Research Funding; Celgene: Consultancy, Other: Institutional Research Funding; bluebird bio: Consultancy; Roche: Consultancy, Other: Institutional Research Funding; Biotest: Other: Institutional Research Funding; Novo Nordisk: Other: Institutional Research Funding; Behring: Other: Institutional Research Funding. Merli:Bellicum Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; SOBI: Consultancy, Membership on an entity's Board of Directors or advisory committees; Jazz: Honoraria; Sanofi-Genzyme: Honoraria; Atara Therapeutics: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 11498-11499
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 1043-1043
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1043-1043
    Abstract: Introduction: Acute myeloid leukemia (AML) is one of the most frequent forms of leukemia in children younger than 15 years. The detection of several mutations in a blast population of pediatric AML (pAML) is supposed to be caused by a clonal evolution from a leukemic stem cell (LSC) to leukemic blasts. LSC are believed to be more resistant to chemotherapy, to be able to survive during treatment and to be responsible for the emergence of a relapse due to the persistence in the bone marrow (BM) niche. Since LSC and potential leukemic subclones are only present in small subpopulations, it has been a major technical challenge to particular analyse only the specific population. To acquire a better understanding of the underlying mechanisms of mutagenesis, clonal evolution and leukemogenesis, the aim of this study was to establish methods that allow the analysis and detection of mutations in single cells of a subpopulation known to contain HSC as well as LSC (CD34+CD38-). We especially focused on a pAML subgroup with mutations in Nucleophosmin (NPM1) and/or fms related tyrosine kinase 3 (Flt3). Methods and Results: We established methods to perform single cell sorting, whole genome amplification (WGA) using multiple displacement amplification (MDA) technology (Qiagen) and subsequent whole exome sequencing. The sorting efficiency was checked as Hoechst stained cells were sorted onto glas slides with 48 defined spots and the presence of single cells was checked under an inverse fluorescent microscope. Subsequently, single CD34+CD38- patient derived cells were sorted into 0,5ml low binding tubes containing 4µl PBS followed by WGA and whole exome sequencing. The mutational status of the sorted single cells from three patients suffering from pAML was analysed and compared to mutations detected at initial diagnosis in DNA from a bulk of BM cells. WGA from single CD34+CD38-PI- cells resulted in an amount of 29 to 31.7µg DNA from each of five single cells. The quality of the amplified DNA was sufficient for whole exome sequencing. A 4bp insertion in exon 12 of NPM1 reflecting a common NPM1 mutation (MutA) initially detected from a bulk of cells was identified in amplified DNA from single cells using whole exome sequencing in 2/3 patients. Internal tandem duplications in Flt3 indicated by mismatches in the alignment could be detected in amplified DNA from single cells of two patients. The detected ITD resemble those initially detected in DNA from a bulk of BM cells. Discussion and Conclusion: Single cell sequencing provides a useful tool to amend the detection of genetic aberrations from a bulk of cells and to confirm the presence of specific mutations in single cells from small subpopulations. It therefore helps to get further insights into the clonal evolution in pAML. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 24-24
    Abstract: BACKGROUND: Children with acute myeloid leukemia (AML) still experience high rates of relapse. Facing increasing survival after first relapse, it appears critically important to examine the consequences of a second relapse in more detail. However, there is no population-based data available in pediatric AML and no reliable statement about general survival, patients' characteristics or treatment approaches can be made. Herein, we report current survival results following second relapse from the BFM study group, which represents to our knowledge the largest available dataset for this subgroup of patients. PATIENTS AND METHODS: Between 2004 and 2017, 1222 pediatric patients (age less than 18 years at initial AML diagnosis) with AML (no secondary leukemia, no Down syndrome, no acute promyelocytic leukemia) were registered in the population-based AML-BFM registry and trials in Germany, Austria, Czech Republic and Switzerland providing a longitudinal data collection with treatment, response rates, survival and disease characteristics. Central review of source documentation confirmed accuracy and consistency of all reported data. Only patients with a documented date of first and second complete remission (CR1 and CR2) and a diagnosed second relapse until the age of 21 are included. Statistical analyses were performed with SAS version 9.4 (SAS Institute). All living patients were censored at the time of last follow-up, but no patient later than 03/27/2020. The median follow-up after diagnosis of second relapse was 6,5 years. RESULTS: In all registered patients, 7% (83 out of 1222) met the strict criteria for a second relapse. For further analyses patients with a date of second relapse diagnosis after 12/31/2017 (n=6), two patients with isolated CNS relapse, who did not receive systemic chemotherapy, one patient with an underlying syndrome and one patient with insufficient data have been excluded. The median age at second relapse was 9,2 years. Sixty percent (n=44) of the patients, who experienced a second relapse, did so within a year after first relapse diagnosis. Eighty percent (n=58) and 7% (n=5) had one or two previous HSCTs, respectively. Eighty-nine percent (n=65) received an anthracycline-containing re-induction (DNX-FLA) followed by FLA or another intensive treatment regimen before at first relapse. In contrast to the standardized treatment approaches in first relapse, patients with second relapse received a wide range of therapy. Forty-six patients (63%) have been treated with an intensive cytotoxic treatment (Table 1). Seventeen patients (23%) got palliation only. Among the 25 patients (35%) who proceeded to HSCT, 21 patients (88%) had a prior HSCT. Survival after second relapse was very poor with a 5-year pOS of 15±4% (see Figure 1A) and a considerable cumulative incidence of early deaths (until day 56 after diagnosis: CI ED 19±5%). Prognosis did not improve over time with consistent overall survival rates until 2017 (see Figure 1B). Causes of death include disease progression (n= 51, 70% of all patients), a combined SCT-related and disease-related cause (n=3, 5%) and SCT-related complications (n=4, 4%) or treatment-associated toxicity (n=5, 7%). The 5-year pOS was 2±2% for patients with an early second relapse vs. 33±9% for those experiencing a second relapse more than a year after the first. (p & lt;0.0001; Figure 1C). The timing of a first relapse and age did not show any influence on overall survival. The best response achieved in the respective bone marrow sample after up to two cycles with cytotoxic treatment have been categorized. Out of 45 patients with conclusive data 31.1% (n=14) achieved a third CR with a pOS of 36±13%, while 62.2% of the patients showed a nonresponse to the treatment (n=28, pOS 7±5%) or no evidence of leukemia, but also no peripheral regeneration (6.7%, n=3, pOS 0±0%). CONCLUSION: These data provide new insights into treatment strategies, prognostic factors and outcome of children with second relapse in pediatric AML. As expected, survival is poor, but nonetheless possible in this increasingly relevant subgroup of patients. These data may serve as foundation for urgently needed international clinical trials for relapsed and refractory AML in children. Disclosures Bourquin: Servier: Other: Travel Support. Reinhardt:CLS Behring: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Roche: Research Funding; bluebird bio: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 108, No. 8 ( 2023-02-23), p. 2044-2058
    Abstract: NUP98 fusions comprise a family of rare recurrent alterations in AML, associated with adverse outcomes. In order to define the underlying biology and clinical implications of this family of fusions, we performed comprehensive transcriptome, epigenome, and immunophenotypic profiling of 2,235 children and young adults with AML and identified 160 NUP98 rearrangements (7.2%), including 108 NUP98-NSD1 (4.8%), 32 NUP98-KDM5A (1.4%) and 20 NUP98-X cases (0.9%) with 13 different fusion partners. Fusion partners defined disease characteristics and biology; patients with NUP98-NSD1 or NUP98-KDM5A had distinct immunophenotypic, transcriptomic, and epigenomic profiles. Unlike the two most prevalent NUP98 fusions, NUP98-X variants are typically not cryptic. Furthermore, NUP98-X cases are associated with WT1 mutations, and have epigenomic profiles that resemble either NUP98-NSD1 or NUP98-KDM5A. Cooperating FLT3-ITD and WT1 mutations define NUP98-NSD1, and chromosome 13 aberrations are highly enriched in NUP98-KDM5A. Importantly, we demonstrate that NUP98 fusions portend dismal overall survival, with the noteworthy exception of patients bearing abnormal chromosome 13 (clinicaltrials gov. Identifiers: NCT00002798, NCT00070174, NCT00372593, NCT01371981).
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2023
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 12, No. 12 ( 2017-12-20), p. e0189500-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2017
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Critical Care Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 36, No. 3 ( 2008-03), p. 818-827
    Type of Medium: Online Resource
    ISSN: 0090-3493
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2008
    detail.hit.zdb_id: 2034247-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2754-2754
    Abstract: Background: Relapse remains a serious event and main obstacle to permanent cure in childhood acute myeloid leukemia (AML). Reduction of measurable/minimal residual disease (MRD) assessed by real-time quantitative PCR (qPCR) during therapy is predictive of outcome in adults but persistent MRD positivity may be observed despite long-term remission and hamper accurate risk assignment. Sequential MRD determinations, rather than analysis at single landmark time points, may better capture the dynamics of leukemia eradication and identify relapse at molecular levels when applied in the post-therapy setting. We investigated the post-induction qPCR MRD kinetics in peripheral blood (PB) and bone marrow (BM) in a large cohort of childhood AML patients and demonstrate the utility of serial assessments for disease surveillance after therapy completion. Methods: We collected the results from qPCR MRD analyses of 774 samples (BM 347, PB 427) from 75 children with AML harboring recurrent fusion transcripts (32 RUNX1-RUNX1T1, 24 CBFB-MYH11, 16 KMT2A-MLLT3 and 3 KMT2A-ELL). Patients were treated according to The Nordic Society for Paediatric Haematology and Oncology (NOPHO)-AML 2004 or NOPHO-DBH AML 2012 protocols (2004 - 2016), or AML-BFM 2012 protocol (2014 - 2016). Only patients who achieved complete remission (CR) during induction therapy and received standard-risk consolidation without allografting were eligible for the study. Risk of relapse as a function of time of MRD positivity in sequential samples from BM or PB during consolidation therapy was modeled using restricted cubic splines. Considering shifting from MRD negative to positive in PB and MRD increments in BM above 5x10-4 as time-dependent variables, the Mantel-Byar method was applied to evaluate the prognostic impact of MRD kinetics during follow-up. Results: Risk of relapse was independent of MRD persistence in BM during therapy, but showed a strong correlation with time of MRD positivity in PB where 8/8 patients with detectable MRD after first consolidation course relapsed (Figure 1A and 1B). At therapy completion, MRD level in BM did not correlate to outcome, HR=0.64/MRD log reduction, 95% confidence interval (CI):0.32 - 1.26 (P=0.19), and there was no difference in 3-year cumulative incidence of relapse (CIR) according to MRD status (P=0.51, Figure 2A). Four patients remained MRD positive throughout consolidation therapy and all subsequently relapsed, whereas 7/28 patients who were MRD negative in PB at the end of therapy suffered relapse, 3-year CIR=27%, CI:14% - 49% (P 〈 0.001, Figure 2B). Shifting from negative to positive in PB during follow-up predicted subsequent relapse in 10/10 patients. All 253 PB samples collected during follow-up from 36 patients in continuous CR were MRD negative. In core binding factor (CBF) AML, persistent low-level MRD positivity in BM was frequent (detected in 38% of patients tested within six months of therapy completion) but an increment to above 5x10-4 heralded subsequent relapse in 12/12 patients. Pre-relapse MRD kinetics were delineated in 16 patients and revealed a median log increment/30 days of 0.8 (range:0.4 - 1.5) in CBF patients versus 2.2 (range:1.1 - 3.7) in patients with KMT2A-MLLT3 (P=0.008). Perspectives: This study demonstrates that qPCR MRD monitoring in PB, rather than BM, represents an accurate discriminator of prognosis and is a highly informative tool for disease surveillance in childhood AML. Early relapse detection during follow-up may facilitate preemptive therapy strategies of molecular relapse, possibly improving relapse treatment outcomes. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...