GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Wall, Brian A.  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2011
    In:  Clinical Cancer Research Vol. 17, No. 22 ( 2011-11-15), p. 7080-7092
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 17, No. 22 ( 2011-11-15), p. 7080-7092
    Abstract: Purpose: Melanoma is a heterogeneous disease where monotherapies are likely to fail due to variations in genomic signatures. B-RAF inhibitors have been clinically inadequate but response might be augmented with combination therapies targeting multiple signaling pathways. We investigate the preclinical efficacy of combining the multikinase inhibitor sorafenib or the mutated B-RAF inhibitor PLX4720 with riluzole, an inhibitor of glutamate release that antagonizes metabotropic glutamate receptor 1 (GRM1) signaling in melanoma cells. Experimental Design: Melanoma cell lines that express GRM1 and either wild-type B-RAF or mutated B-RAF were treated with riluzole, sorafenib, PLX4720, or the combination of riluzole either with sorafenib or with PLX4720. Extracellular glutamate levels were determined by glutamate release assays. MTT assays and cell-cycle analysis show effects of the compounds on proliferation, viability, and cell-cycle profiles. Western immunoblotting and immunohistochemical staining showed apoptotic markers. Consequences on mitogen-activated protein kinase pathway were assessed by Western immunoblotting. Xenograft tumor models were used to determine the efficacy of the compounds in vivo. Results: The combination of riluzole with sorafenib exhibited enhanced antitumor activities in GRM1-expressing melanoma cells harboring either wild-type or mutated B-RAF. The combination of riluzole with PLX4720 showed lessened efficacy compared with the combination of riluzole and sorafenib in suppressing the growth of GRM1-expressing cells harboring the B-RAFV600E mutation. Conclusions: The combination of riluzole with sorafenib seems potent in suppressing tumor proliferation in vitro and in vivo in GRM1-expressing melanoma cells regardless of B-RAF genotype and may be a viable therapeutic clinical combination. Clin Cancer Res; 17(22); 7080–92. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2007
    In:  Cancer Research Vol. 67, No. 5 ( 2007-03-01), p. 2298-2305
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 5 ( 2007-03-01), p. 2298-2305
    Abstract: Recently, several laboratories have started to investigate the involvement of glutamate signaling in cancer. In previous studies, we reported on a transgenic mouse model that develops melanoma spontaneously. Subsequent studies in these mice identified that the aberrant expression of metabotropic glutamate receptor 1 (GRM1) in melanocytes played a critical role in the onset of melanoma. Confirmation of the etiologic role of GRM1 in melanoma development was shown in a second transgenic line with GRM1 expression under the regulation of a melanocyte-specific dopachrome tautomerase promoter. Ectopic expression of GRM1 was also detected in a subset of human melanoma cell lines and biopsies, suggesting that aberrant expression of GRM1 in melanocytes may contribute to the development of human melanoma. GRM1, a seven-transmembrane domain G protein–coupled receptor, is normally expressed and functional in neuronal cells, and its ligand, glutamate, is the major excitatory neurotransmitter. Human melanoma cells are shown here to release elevated levels of glutamate, implying a possible autocrine loop. Treatment of GRM1-expressing human melanoma cells with a GRM1 antagonist (LY367385 or BAY36-7620) or a glutamate release inhibitor (riluzole) leads to a suppression of cell proliferation as well as a decrease in levels of extracellular glutamate. Treatment of human melanoma cell xenografts with riluzole for 18 days via p.o. gavage or i.v. injection leads to inhibition of tumor growth by 50% in comparison with controls. These data suggest the importance of glutamate signaling in human melanoma and imply that the suppression of glutamate signaling may be a new target for melanoma therapy. [Cancer Res 2007;67(5):2298–305]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...