GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-07-21)
    Abstract: Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing 〉 5000 copies of PD-L1, may provide both safety and potency advantages.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 6 ( 2022-06-02), p. 1482-1499
    Abstract: Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology, and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase I study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies. Significance: We have identified a potent small-molecule inhibitor of PD-L1, INCB086550, which has biological properties similar to PD-L1/PD-1 monoclonal antibodies and may represent an alternative to antibody therapy. Preliminary clinical data in patients demonstrated increased immune activation and tumor growth control, which support continued clinical evaluation of this approach. See related commentary by Capparelli and Aplin, p. 1413. This article is highlighted in the In This Issue feature, p. 1397
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 9, No. Suppl 2 ( 2021-11), p. A247-A247
    Abstract: Blocking the PD-L1 immune checkpoint axis with therapeutic antibodies against either the ligand or PD-1 has proven to be an effective treatment modality for multiple cancer histologies. Small molecules targeting the PD-L1/PD-1 axis represent an alternate modality of blocking this pathway. INCB090244 is a small molecule that blocks the PD-L1/PD-1 interaction and restores T cell function similar to the clinical stage PD-L1 inhibitor INCB086550. Methods MDA-MB-231 or CHO cells overexpressing PD-L1 were used to investigate effects of INCB090244 on PD-L1 dimerization, and intracellular trafficking. In vivo, CD34+ humanized mice harboring MDA-MB-231 tumors or C57Bl/6 mice bearing GL261 subcutaneous or orthotopic tumors were used to investigate the efficacy, biodistribution, and pharmacodynamic effects of INCB090244. Human specific gene expression changes in tumors from MDA-MB-231 bearing humanized mice were analyzed by RNA sequencing. Results In vitro, INCB090244 potently disrupted the PD-L1:PD-1 interaction, induced PD-L1 dimerization, and inhibited PD-1-mediated negative signaling, resulting in enhanced IFN gamma and IL-2 production in primary human immune cells. Following dimerization, INCB090244 induced internalization of PD-L1 resulting in co-localization with the Golgi apparatus and partial localization in the nucleus. After cell treatment and washing, full restoration of PD-L1 at the cell surface was observed after 5 days of culture in vitro. In vivo, INCB090244 reduced tumor growth in CD34+ humanized mice bearing MDA-MB-231 tumors, to similar levels as atezolizumab. Antitumor activity was completely abrogated in immunodeficient mice, confirming the pharmacologic dependency on a competent immune system. RNA sequencing analysis on tumors from these mice demonstrated similar T cell activation gene signatures as clinical checkpoint blockade antibodies. Biodistribution studies in mice bearing both subcutaneous and orthotopically implanted GL261 glioma tumors demonstrated higher accumulation of INCB090244 in tumor tissue compared to PD-L1 antibodies. Conclusions INCB090244 effectively disrupted the PD-L1/PD-1 interaction, induced dimerization and internalization of PD-L1, restored immunity in in vitro and in vivo tumor models, and is a suitable surrogate for the clinical candidate INCB086550. RNA sequencing demonstrated T cell activation signatures similar to those observed in patients receiving checkpoint blockade antibodies. Biodistribution studies demonstrated higher subcutaneous and brain tumor penetration by INCB090244 compared to PD-L1 antibodies, suggesting a potential advantage of small molecule PD-L1 inhibitors in accessing intratumoral regions. These data further support the clinical evaluation of small molecule PD-L1 inhibitors as an alternative approach to immune therapy.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 2719863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...