GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: British Journal of Pharmacology, Wiley
    Abstract: Vancomycin is one of the most common antibiotics administered in the hospital setting, yet acute kidney injury is a major limiting factor. Common combinations of antibiotics with vancomycin have been reported to worsen and improve vancomycin‐induced kidney injury. We aimed to study the impact of flucloxacillin and imipenem‐cilastatin on kidney injury when combined with vancomycin in our translational rat model. Experimental Approach Male Sprague‐Dawley rats received allometrically scaled (1) vancomycin (2) flucloxacillin, (3) vancomycin+flucloxacillin, (4) vancomycin+imipenem‐cilastatin, or (5) saline for 4 days. Vancomycin was administered intravenously and flucloxacillin or imipenem‐cilastatin were administered intraperitoneally. Kidney injury was evaluated via drug accumulation and urinary biomarkers including urinary output, kidney injury molecule‐1 (KIM‐1), clusterin, and osteopontin. Relationships between vancomycin accumulation in the kidney and urinary kidney injury biomarkers were explored. Key Results Urinary output increased every study day for vancomycin+flucloxacillin; whereas in the vancomycin group it was elevated after the first dose only. In the vancomycin+flucloxacillin group, urinary KIM‐1/24h increased on all days compared to vancomycin. In the vancomycin+imipenem‐cilastatin group, urinary KIM‐1/24h was decreased on days 1 and 2 compared to vancomycin. Similar trends were observed for clusterin. More vancomycin accumulated in the kidney with vancomycin+flucloxacillin compared to vancomycin and vancomycin+imipenem‐cilastatin. The accumulation of vancomycin in the kidney tissue correlated with increasing urinary KIM‐1 (4‐parameter Hill Slope, R 2 =0.7985). Conclusion and Implications Vancomycin+flucloxacillin caused more kidney injury compared to vancomycin alone and vancomycin+imipenem‐cilastatin in a translational rat model as determined by multiple kidney injury biomarkers. The combination of vancomycin+imipenem‐cilastatin was nephroprotective.
    Type of Medium: Online Resource
    ISSN: 0007-1188 , 1476-5381
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2029728-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Clinical Infectious Diseases Vol. 76, No. 8 ( 2023-04-17), p. 1521-1522
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 76, No. 8 ( 2023-04-17), p. 1521-1522
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2002229-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 67, No. 8 ( 2023-08-17)
    Abstract: Recent clinical studies have reported additive nephrotoxicity with the combination of vancomycin and piperacillin-tazobactam. However, preclinical models have failed to replicate this finding. This study assessed differences in iohexol-measured glomerular filtration rate (GFR) and urinary injury biomarkers among rats receiving this antibiotic combination. Male Sprague-Dawley rats received either intravenous vancomycin, intraperitoneal piperacillin-tazobactam, or both for 96 h. Iohexol-measured GFR was used to quantify real-time kidney function changes. Kidney injury was evaluated with the urinary biomarkers kidney injury molecule-1 (KIM-1), clusterin, and osteopontin. Compared to the control, rats that received vancomycin had numerically lower GFRs after drug dosing on day 3. Rats in this group also had elevations in urinary KIM-1 on experimental days 2 and 4. Increasing urinary KIM-1 was found to correlate with decreasing GFR on experimental days 1 and 3. Rats that received vancomycin plus piperacillin-tazobactam (vancomycin+piperacillin-tazobactam) did not exhibit worse kidney function or injury biomarkers than rats receiving vancomycin alone. The combination of vancomycin and piperacillin-tazobactam does not cause additive nephrotoxicity in a translational rat model. Future clinical studies investigating this antibiotic combination should employ more sensitive biomarkers of kidney function and injury, similar to those utilized in this study.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 66, No. 3 ( 2022-03-15)
    Abstract: Clinical studies have reported additive nephrotoxicity associated with the combination of vancomycin (VAN) and piperacillin-tazobactam (TZP). This study assessed differences in glomerular filtration rate (GFR) and urinary biomarkers between rats receiving VAN and those receiving VAN + TZP. Male Sprague-Dawley rats ( n  = 26) were randomized to receive 96 h of intravenous VAN at 150 mg/kg/day, intraperitoneal TZP at 1,400 mg/kg/day, or VAN + TZP. Kidney function was evaluated using fluorescein-isothiocyanate sinistrin and a transdermal sensor to estimate real-time glomerular filtration rate (GFR). Kidney injury was evaluated via urinary biomarkers, including kidney injury molecule-1 (KIM-1), clusterin, and osteopontin. Compared to a saline control, only rats in the VAN group showed significant declines in GFR by day 4 (−0.39 mL/min/100 g body weight; 95% confidence interval [CI] , −0.68 to −0.10; P  = 0.008). When the VAN + TZP and VAN alone treatment groups were compared, significantly higher urinary KIM-1 marginal linear predictions were observed in the VAN alone group on day 1 (18.4 ng; 95% CI, 1.4 to 35.3; P  = 0.03), day 2 (27.4 ng; 95% CI, 10.4 to 44.3; P  = 0.002), day 3 (18.8 ng; 95% CI, 1.9 to 35.8; P  = 0.03), and day 4 (23.2 ng; 95% CI, 6.3 to 40.2; P  = 0.007). KIM-1 was the urinary biomarker that most correlated with decreasing GFR on day 3 (Spearman’s rho, −0.45; P  = 0.022) and day 4 (Spearman’s rho, −0.41; P  = 0.036). Kidney function decline and increased KIM-1 were observed among rats that received VAN only but not those that received TZP or VAN + TZP. The addition of TZP to VAN does not worsen kidney function or injury in our translational rat model.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 67, No. 2 ( 2023-02-16)
    Abstract: Vancomycin-induced kidney injury is common, and outcomes in humans are well predicted by animal models. This study employed our translational rat model to investigate temporal changes in the glomerular filtration rate (GFR) and correlations with kidney injury biomarkers related to various vancomycin dosing strategies. First, Sprague-Dawley rats received allometrically scaled loading doses or standard doses. Rats that received a loading dose had low GFRs and increased urinary injury biomarkers (kidney injury molecule 1 [KIM-1] and clusterin) that persisted through day 2 compared to those that did not receive a loading dose. Second, we compared low and high allometrically scaled vancomycin doses to a positive acute kidney injury control of high-dose folic acid. Rats in both the low- and high-dose vancomycin groups had higher GFRs on all dosing days than the positive-control group. When the two vancomycin groups were compared, rats that received the low dose had significantly higher GFRs on days 1, 2, and 4. Compared to low-dose vancomycin, the KIM-1 was elevated among rats in the high-dose group on dosing day 3. The GFR correlated most closely with the urinary injury biomarker KIM-1 on all experimental days. Vancomycin loading doses were associated with significant losses of kidney function and elevations of urinary injury biomarkers. In our translational rat model, both the degree of kidney function decline and urinary biomarker increases corresponded to the magnitude of the vancomycin dose (i.e., a higher dose resulted in worse outcomes).
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...