GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3811-3811
    Abstract: Abstract 3811 Background: A large number of genes have been found mutated in CMML including 18 encoding signaling molecules (CBL, N/KRAS, JAK2, FLT3, KIT), epigenetic regulators (TET2, IDH1/2, DNMT3A, ASXL1, EZH2) transcription (RUNX1, NPM1) and splicing (SRSF2, SF3B1, U2AF1, ZRSR2) factors. We report the genotypic patterns, clinical correlates and prognostic impact of mutations in those 18 genes in a large cohort of CMML patients (pts). Methods: Bone marrow or peripheral CD14+ cells from 224 CMML pts from a non interventional study (n=186) or a phase II decitabine trial (n=38; Braun Blood 2011) were genotyped by mutation specific techniques and Sanger sequencing for up to 18 genes (depending on available material): TET2, IDH1, IDH2, DNMT3A, CBL, NRAS, KRAS, JAK2V617F, FLT3, KIT, NPM1, RUNX1, ASXL1, EZH2, SF3B1, SRSF2, U2AF1 and ZRSR2. The number of TET2 alleles with a functional Cystein Rich (CysR) domain (Delhommeau NEJM 2009) was predicted based on mutation type and zygosity, assuming that double mutations affect independent alleles. Overall (OS) and AML-free (AMLFS) survival were analyzed from the date of genotyping. Results: 224 CMML pts (152M/72F, median age 75y) were genotyped at diagnosis (37%) or after a median of 7.2 months of evolution (none had received hypomethylating agents [HMA] before genotyping); WHO diagnosis was CMML-1/2 in 78%/22%, 70% pts had normal karyotype, 22% had extramedullary disease (EMD); 13 pts had autoimmune manifestations (AIM). The most frequently mutated genes were TET2 (58%), SRSF2 (47%) and ASXL1 (38%). Mutations in RUNX1, CBL and NRAS were found in 14%, 11% and 10% of pts, respectively (resp). All other genes were mutated in 〈 10% of pts. Only 5% pts lacked any mutation, and 70% had ≥2 mutated genes; TET2, IDH1 and IDH2 mutations, present in 64% of pts, were mutually exclusive. Mutations in splice and signaling genes were present in 63% and 35% of pts, with 2 mutated genes within each group in 3% and 2% pts, resp. ASXL1 mutations were less frequent in the presence of TET2 mutations (P 〈 .0001). Significant mutual associations included ASXL1/RUNX1, ASXL1/NRAS, TET2/SRSF2, RUNX1/SRSF2 and U2AF1/IDH2. In multivariate analysis accounting for those interactions, TET2 status was the only independent predictor of hemoglobin values (median 10.2 vs 11.9 g/dL in wildtype [wt] vs mutated pts, P 〈 .0001) with a gene dosage effect (P=.0003). Platelet counts were higher in JAK2V617F pts, and lower in pts with RUNX1, TET2 or SRSF2 mutations. WBC and monocyte counts were higher in pts with ASXL1 and NRAS mutations. EMD was associated to ASXL1, CBL, KRAS and JAK2 mutations. EMD, CMML-2 and abnormal karyotype were less frequent in TET2 mutated pts. All 13 pts with AIM had at least one mutated gene, with no specific genotype spectrum. With a median follow-up of 25.4 months, median OS and AMLFS were 32.2 and 28.0 months resp. In univariate analysis, OS was decreased in pts with IDH2 mutations (P=.04), and AMLFS was shorter in pts with NRAS (P=.04), RUNX1 (P=.03) and SRSF2 (P=.04) mutations. ASXL1 mutations markedly reduced OS (median 18.5 vs 35.7 months in wt pts) and AMLFS (median 12.5 vs 34.7 months, both P 〈 .0001), with similar results in the 74 pts who received HMA during follow-up. In the 224 pts, there was no significant effect of overall TET2 status (wt vs mutated) on OS or AMLFS (both P=.09) but median OS was 29.3, 35.7 months and not reached in pts with 2 (57%), 1 (30%) and 0 (13%) TET2 alleles with a putatively functional CysR domain (P=.01). Similar differences were noted for AMLFS (P=.008). In multivariate analysis including peripheral blood counts, WHO classification, cytogenetics, disease evolution and therapy, ASXL1 was the only gene whose mutations independently predicted inferior OS (HR: 2.44, 95% CI: 1.36–4.37, P=.003)and AMLFS (HR: 2.54, 95% CI: 1.46–4.42, P=.001); SRSF2 mutations only predicted inferior AMLFS (HR: 2.05, 95% CI: 1.15–3.65, P=.02). The total number of mutated genes as a continuous variable, which was higher in ASXL1 mutated pts (mean 3.0 vs 1.8, P 〈 .0001), was the only genetic variable to retain prognostic value when added to those models (OS and AMLFS both P 〈 .0001). Conclusion: TET2, SRSF2 and ASXL1 are the most frequent mutated genes in CMML. The number and location of TET2 mutations may impact CMML presentation and outcome. The total number of mutated genes has the strongest prognostic relevance, but ASXL1 mutational status provides a robust surrogate prognostic marker for daily practice. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 31, No. 19 ( 2013-07-01), p. 2428-2436
    Abstract: Several prognostic scoring systems have been proposed for chronic myelomonocytic leukemia (CMML), a disease in which some gene mutations—including ASXL1—have been associated with poor prognosis in univariable analyses. We developed and validated a prognostic score for overall survival (OS) based on mutational status and standard clinical variables. Patients and Methods We genotyped ASXL1 and up to 18 other genes including epigenetic (TET2, EZH2, IDH1, IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSF2, U2AF1), transcription (RUNX1, NPM1, TP53), and signaling (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312 patients with CMML. Genotypes and clinical variables were included in a multivariable Cox model of OS validated by bootstrapping. A scoring system was developed using regression coefficients from this model. Results ASXL1 mutations (P 〈 .0001) and, to a lesser extent, SRSF2 (P = .03), CBL (P = .003), and IDH2 (P = .03) mutations predicted inferior OS in univariable analysis. The retained independent prognostic factors included ASXL1 mutations, age older than 65 years, WBC count greater than 15 ×10 9 /L, platelet count less than 100 ×10 9 /L, and anemia (hemoglobin 〈 10 g/dL in female patients, 〈 11g/dL in male patients). The resulting five-parameter prognostic score delineated three groups of patients with median OS not reached, 38.5 months, and 14.4 months, respectively (P 〈 .0001), and was validated in an independent cohort of 165 patients (P 〈 .0001). Conclusion A new prognostic score including ASXL1 status, age, hemoglobin, WBC, and platelet counts defines three groups of CMML patients with distinct outcomes. Based on concordance analysis, this score appears more discriminative than those based solely on clinical parameters.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2013
    detail.hit.zdb_id: 2005181-5
    detail.hit.zdb_id: 604914-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3997-3997
    Abstract: Abstract 3997 We have shown previously that cells identified as monocytes in the peripheral blood of patients with chronic myelomonocytic leukemia (CMLL) included a variable proportion of CD14-negative, CD24-positive immature granulocytes. These cells synthesize and secrete alpha-defensin 1–3 that inhibit M-CSF-driven monocyte differentiation into macrophages through interaction with the P2Y6 purinergic receptor (Droin N et al, Blood 2010). In the present study, we show that these CD14-,CD24+ immature granulocytes also inhibit the proliferation of autologous lymphocytes activated with anti-CD3 and anti-CD28 antibodies through cell-cell contact. This functional property suggested that these cells could be “myeloid-derived suppressive cells” (MDSC), which was supported by their phenotype that included expression of CD15 marker at their surface and survivin, S100A8 and S100A9, Cyclin D2 and Cyclin D3 at the mRNA level. STAT3 and STAT6 were found constitutively phosphorylated in these immature granulocytes that responded to Toll-like receptor agonists such as LPS or Pam-6. CD14-positive monocytes of the leukemic clone activated these MDSC through production of IL-13 and induction of arginase 1 mRNA, which could be reproduced by recombinant IL-13. On the other hand, activation of these MDSC did not require induction of the nitric oxide synthase mRNA, in agreement with their granulocytic origin. We were able to generate immature myeloid cells expressing CD24 with morphology similar to that of peripheral blood MDSC by in vitro culture of various subpopulations of bone marrow CD34-positive cells obtained from CMML patients, including the most immature CD34+/CD38-/CD90+ cells. Furthermore, generation of these cells could be recapitulated in vivo by xenotransplantation of CMML CD34+ cells in NOG mice, albeit with lower efficacy than CD14+ cells. In patients with high grade CMML included in a phase II clinical trial, decitabine was observed to decrease both CD14+,CD24- monocytes and CD14-,CD24+ immature granulocytes. Altogether, these data suggest that CMML initiating cells generate CD14-positive monocytes and, in most patients, an additional population of CD14-negative immature granulocytes with suppressive properties towards innate and acquired immune response. Generation of these cells may account for the high sensitivity of CMML patients to autoimmune and infectious diseases. Disclosures: Fenaux: Celgene: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Janssen Cilag: Honoraria, Research Funding; ROCHE: Honoraria, Research Funding; AMGEN: Honoraria, Research Funding; GSK: Honoraria, Research Funding; Merck: Honoraria, Research Funding; Cephalon: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-02-24)
    Abstract: The cytidine analogues azacytidine and 5-aza-2’-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 309-309
    Abstract: Abstract 309 Background: The granulomonocytic (GM) hyperplasia of CMML has been attributed to GM-CSF hypersensitivity triggered by mutations in the CBL/RAS pathway according to the prevailing model in juvenile myelomonocytic leukemias (Kotecha Cancer Cell 2008). Recurrent mutations affecting epigenetic (eg TET2 and ASXL1) and splicing (eg SRSF2) machineries, or cytokine signaling (N/KRAS, CBL, JAK2) are present in most CMML cases, but none is specific of CMML. In 224 CMML patients (pts), we found TET2 (58%), SRSF2 (47%) and ASXL1 (38%) to be the most frequently mutated genes; only 66 (35%) cases had mutations in cytokine signaling genes (CBL, N/KRAS, JAK2, FLT3, KIT) (abstract submitted). We analyzed the differentiation of CD34+populations from genetically annotated CMML pts to address the mechanisms of GM hyperplasia in CMML. Methods: CD34+ populations (hematopoietic stem cells [HSC]; multipotent [MPP] ; common myeloid [CMP] and granulomonocytic progenitors [GMP] defined by the CD34/CD38/CD90/CD123/CD45RA panel; Majeti Cell Stem Cell 2007) from 28 genetically annotated CMML and TET2 mutated MPN (n=8) or MDS (n=5) cases were cloned and genotyped for each mutation identified in mature CD14+ cells, and differentiated in vitro. Results: Early clonal dominance, with at least one mutation in 〉 75% of HSC/MPP clones, was found in all cases. In 18/19 pts with ≥2 mutations, a linear succession of mutations was found, with signaling mutations often following TET2 or ASXL1 mutations. Contrasting with the dominance of first events in HSC/MPP, second events reached clonal dominance in GMP, suggesting that they provide a selective advantage during the early steps of myeloid differentiation. We next analyzed the clonogenicity of peripheral blood (PB) CD34+ cells in the presence of GM-CSF (10 ng/mL) in 20 CMML cases and 4 controls. GM-CSF hypersensitivity (clonogenicity 〉 mean+2SD of controls) was found in 7 (35%) cases. A mutation in a signaling gene was found in 6/7 pts (1 homozygous JAK2, 1 homozygous CBL, 4 heterozygous N/KRAS mutations), compared to 3/13 in pts without GM-CSF hypersensitivity (2 JAK2, 1 CBL, all heterozygous; P=.02) Median WBC was 29.2 and 11.4 G/L in pts with and without GM-CSF hypersensitivity, respectively (P=.08). The proportion of GMP in bone marrow (BM) CD34+cells was not significantly different in 33 CMML pts compared to 15 age-matched controls. Clonogenicity of GMP was similar in CMML and controls, except for a trend toward increased clonogenicity in pts with mutations in signaling genes. In contrast, the proportion of MPP and CMP was higher in CMML than in controls (P 〈 .01 and P 〈 .05, resp.). In erythromyeloid conditions (SCF, IL-3, G-CSF & EPO), both CMP and to a lesser extent MPP had an increased ability to form GM colonies at the expense of erythroid colonies (P 〈 .001 and P 〈 .01, resp.). Compared to healthy CMP, CMML CMP had and increased ability to mature into GMP in short-term culture, and increased PU.1 mRNA expression (P 〈 .05), without significant changes in the levels of GATA1, CEBPA and CEBPB. Finally, in 16 pts, the proportion of GM colonies differentiating from CMP at the expense of erythroid colonies was inversely correlated to patient hemoglobin level (P=.002). Thus, premature GM differentiation of CMP, and to a lesser extent MPP, appears as the dominant mechanism of GM hyperplasia in CMML, whereas GM-CSF hypersensitivity and GMP expansion contribute only in the minority of patients with mutations in signaling genes. We next explored a possible link between early clonal dominance of TET2 mutations and premature GM differentiation. In TET2 mutated MPN (n=8) or MDS (n=5), the PB monocyte count was significantly correlated to the size of the TET2-mutated clone in the CD34+/CD38− (P=.006) rather than in the CD34+/CD38+ population (P=.08). Finally, functional invalidation by shRNA of TET2 in CD34+/CD38− followed by culture in the presence of SCF, IL-3, G-CSF & EPO caused a GM expansion that was not observed in CD34+/CD38+ cells. Similar analyses are underway for ASXL1. Conclusion: Our results suggest that early clonal dominance of mutations affecting the epigenetic machinery leading to premature GM differentiation of multipotent progenitors, rather than GM-CSF hypersensitivity, is the main mechanism of GM hyperplasia in CMML. This suggests a model whereby a single mutation can lead to different phenotypes, depending on the stage of differentiation at which the mutation has gained clonal dominance. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 13 ( 2012-09-27), p. 2719-2722
    Abstract: RUNX1 gene alterations are associated with acquired and inherited hematologic malignancies that include familial platelet disorder/acute myeloid leukemia, primary or secondary acute myeloid leukemia, and chronic myelomonocytic leukemia. Recently, we reported that RUNX1-mediated silencing of nonmuscle myosin heavy chain IIB (MYH10) was required for megakaryocyte ploidization and maturation. Here we demonstrate that runx1 deletion in mice induces the persistence of MYH10 in platelets, and a similar persistence was observed in platelets of patients with constitutional (familial platelet disorder/acute myeloid leukemia) or acquired (chronic myelomonocytic leukemia) RUNX1 mutations. MYH10 was also detected in platelets of patients with the Paris-Trousseau syndrome, a thrombocytopenia related to the deletion of the transcription factor FLI1 that forms a complex with RUNX1 to regulate megakaryopoiesis, whereas MYH10 persistence was not observed in other inherited forms of thrombocytopenia. We propose MYH10 detection as a new and simple tool to identify inherited platelet disorders and myeloid neoplasms with abnormalities in RUNX1 and its associated proteins.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 121, No. 12 ( 2013-03-21), p. 2186-2198
    Abstract: Early clonal dominance may distinguish chronic myelomonocytic leukemia from other chronic myeloid neoplasms with similar gene mutations. Early dominance of TET2-mutated cells in the hematopoietic tissue promotes myeloid differentiation skewing toward the granulomonocytic line.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...