GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell, Elsevier BV, Vol. 166, No. 4 ( 2016-08), p. 963-976
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 214, No. 3 ( 2017-03-06), p. 579-596
    Abstract: Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of α-smooth muscle actin (αSMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated αSMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2017
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Hematology/Oncology Clinics of North America Vol. 29, No. 4 ( 2015-08), p. 609-617
    In: Hematology/Oncology Clinics of North America, Elsevier BV, Vol. 29, No. 4 ( 2015-08), p. 609-617
    Type of Medium: Online Resource
    ISSN: 0889-8588
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 93115-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 22 ( 2019-11-15), p. 6742-6755
    Abstract: KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells. Experimental Design: We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. In addition, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities. Results: Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies. Conclusions: Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 16_Supplement ( 2016-08-15), p. B16-B16
    Abstract: Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable model systems to interrogate pathways involved in pancreatic tumorigenesis and to probe individual responses to novel therapies are urgently needed. To that end, we established methods to culture normal and neoplastic pancreatic duct cells as three-dimensional organoid cultures. Pancreatic organoids can be rapidly generated from resected tumors or fine needle biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Following orthotopic transplant, neoplastic organoids recapitulated the full spectrum of tumor development by forming early-grade neoplasms that progressed to locally invasive and metastatic carcinomas, demonstrating the utility of organoids to model the stages of PDA tumorigenesis. Monolayer cell lines were generated from organoid cultures with high efficiency, creating a diverse collection of new PDA cell lines. To better understand pathways involved in PDA progression, we performed transcriptomic and proteomic analyses of murine organoids derived from normal pancreatic ducts, pancreatic intraepithelial neoplasias (PanINs), and PDAs. These datasets revealed expression changes associated with early and late pancreatic tumorigenesis. To identify genes dysregulated during pancreatic tumorigenesis whose depletion impaired human PDA cells, a CRISPR-Cas competition assay was employed. Taken together, pancreatic organoids offer a novel model system for studying pancreatic cancer biology and can be used to screen for genetic dependencies in PDA. Citation Format: Lindsey A. Baker, Hervé Tiriac, Vincenzo Corbo, Sylvia F. Boj, Chang-il Hwang, Iok In Christine Chio, Danielle D. Engle, Myrthe Jager, Mariano Ponz-Sarvise, Mona S. Spector, Ana Gracanin, Tobiloba Oni, Kenneth H. Yu, Ruben van Boxtel, Meritxell Huch, Keith D. Rivera, John P. Wilson, Michael E. Feigin, Daniel Öhlund, Abram Handly-Santana, Christine M. Ardito-Abraham, Michael Ludwig, Ela Elyada, Brinda Alagesan, Giulia Biffi, Georgi N. Yordanov, Bethany Delcuze, Brianna Creighton, Kevin Wright, Youngkyu Park, Folkert H.M. Morsink, I. Quintus Molenaar, Inne H. Borel Rinkes, Edwin Cuppen, Yuan Hao, Ying Jin, Isaac J. Nijman, Christine Iacobuzio-Donahue, Steven D. Leach, Darryl J. Pappin, Molly Hammell, David S. Klimstra, Olca Basturk, Ralph H. Hruban, George Johan Offerhaus, Robert G.J. Vries, Hans Clevers, David A. Tuveson. Using human patient-derived organoids to identify genetic dependencies in pancreatic cancer. [abstract] . In: Proceedings of the AACR Special Conference: Patient-Derived Cancer Models: Present and Future Applications from Basic Science to the Clinic; Feb 11-14, 2016; New Orleans, LA. Philadelphia (PA): AACR; Clin Cancer Res 2016;22(16_Suppl):Abstract nr B16.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 24_Supplement ( 2016-12-15), p. B64-B64
    Abstract: Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with a 5-year survival rate less than 6%. The late diagnosis of the disease and poor efficacy of systemic treatments are major factors for this poor prognosis, and highlight the need for novel PDA models better able to predict resistance/sensitivity to treatment. To fulfill this need, our laboratory developed a three-dimensional culture system that enables the rapid growth of both mouse and human pancreatic ductal organoids. Organoids can be established from healthy or neoplastic tissues using both large (surgical material) and small (fine needle biopsy) samples, thereby providing a novel platform for therapeutic testing for all stages of disease. In this study, we use organoids to evaluate the therapeutic efficacy of the simultaneous inhibition of MEK and AKT kinases, which are activated in PDA by KRAS mutations. Tumor-derived organoids were resistant to both single agents and combination treatment. Genetically engineered mouse models of pancreatic cancer (KPC) also only exhibited a brief response to dual inhibition of MEK and AKT. To assess the potential mechanism of resistance, we evaluated the activation of a number of receptor tyrosine kinases by interrogating both mouse and organoid treated tissues. Members of the ERBB family were activated in KPC animals and tumor-derived organoids treated with both MEK and AKT inhibitors. Accordingly, the addition of an irreversible pan-ERBB inhibitor to the combination of MEK and AKT inhibitors, or MEK inhibitor alone, prevented ERBB-mediated resistance and improved tumor sensitivity to therapeutic intervention. This new therapeutic strategy is efficacious both ex-vivo and in vivo using human tumor-derived organoids and their associated transplant model. Finally, we show that human PDA organoids can be used in high throughput therapeutic screening for the identification of patient-specific therapeutic sensitivities. In summary, pancreatic organoids represent a system that can be used to predict drug sensitivity as well as to identify mechanism of resistance. *Equal contribution Citation Format: Herve Tiriac*, Mariano Ponz-Sarvise*, Vincenzo Corbo*, Kristopher K. Frese*, Dannielle D. Engle*, Daniel Ohlund, Tobiloba Oni, Chang-il Hwang, Abram Handly-Santana, Brinda Alagesan, Dea Filippini, Kevin Wright, Kenneth H. Yu, Youngkyu Park, David A. Tuveson.{Authors}. Using pancreatic organoids to infer therapeutic resistance and sensitivity. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2016 May 12-15; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2016;76(24 Suppl):Abstract nr B64.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...