GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (3)
  • Tsai, Tsung-Ting  (3)
Material
Publisher
  • Frontiers Media SA  (3)
Person/Organisation
Language
Years
  • 1
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 11 ( 2023-5-5)
    Abstract: Intraoperative pedicle screw depth adjustment after initial insertion, including both forward and backward adjustments, is sometimes necessary to facilitate rod application and ensure that the screw is in the correct position, which is determined by intraoperative fluoroscopy. Adjusting the screw with forward turns has no negative influence on the screw fixation stability; however, screw turnback may weaken the fixation stability. The aim of this study is to evaluate the biomechanical properties of screw turnback and demonstrate the reduction in the fixation stability after the screw is turned 360° from its full insertion position. Commercially available synthetic closed-cell polyurethane foams with three different densities simulating various degrees of bone density were utilized as substitutes for human bone. Two different screw shapes (cylindrical and conical) together with two different pilot hole profiles (cylindrical and conical) were tested. Following specimen preparation, screw pullout tests were conducted using a material test machine. The mean maximal pullout strength between full insertion and 360-degree turnback from full insertion in each setting was statistically analyzed. The mean maximal pullout strength after 360-degree turnback from full insertion was generally lower than that at full insertion. The reduced mean maximal pullout strength after turnback increased with decreasing bone density. Conical screws had significantly lower pullout strength after 360-degree turnback than cylindrical screws. The mean maximal pullout strength was reduced by up to approximately 27% after 360-degree turnback when using a conical screw in a low bone density specimen. Additionally, specimens treated with a conical pilot hole presented a less reduction in pullout strength after screw turnback as compared to those with a cylindrical pilot hole. The strength of our study was that we systematically investigated the effects of various bone densities and screw shapes on screw stability after turnback, which has rarely been reported in the literature. Our study suggests that pedicle screw turnback after full insertion should be reduced in spinal surgeries, particularly procedures that use conical screws in osteoporotic bone. Pedicle screw secured with a conical pilot hole might be beneficial for screw adjustment.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Bioengineering and Biotechnology Vol. 11 ( 2023-6-1)
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 11 ( 2023-6-1)
    Abstract: Ball-and-socket designs of cervical total disc replacement (TDR) have been popular in recent years despite the disadvantages of polyethylene wear, heterotrophic ossification, increased facet contact force, and implant subsidence. In this study, a non-articulating, additively manufactured hybrid TDR with an ultra-high molecular weight polyethylene core and polycarbonate urethane (PCU) fiber jacket, was designed to mimic the motion of normal discs. A finite element (FE) study was conducted to optimize the lattice structure and assess the biomechanical performance of this new generation TDR with an intact disc and a commercial ball-and-socket Baguera ® C TDR (Spineart SA, Geneva, Switzerland) on an intact C5-6 cervical spinal model. The lattice structure of the PCU fiber was constructed using the Tesseract or the Cross structures from the IntraLattice model in the Rhino software (McNeel North America, Seattle, WA) to create the hybrid I and hybrid II groups, respectively. The circumferential area of the PCU fiber was divided into three regions (anterior, lateral and posterior), and the cellular structures were adjusted. Optimal cellular distributions and structures were A2L5P2 in the hybrid I and A2L7P3 in the hybrid II groups. All but one of the maximum von Mises stresses were within the yield strength of the PCU material. The range of motions, facet joint stress, C6 vertebral superior endplate stress and path of instantaneous center of rotation of the hybrid I and II groups were closer to those of the intact group than those of the Baguera ® C group under 100 N follower load and pure moment of 1.5 Nm in four different planar motions. Restoration of normal cervical spinal kinematics and prevention of implant subsidence could be observed from the FE analysis results. Superior stress distribution in the PCU fiber and core in the hybrid II group revealed that the Cross lattice structure of a PCU fiber jacket could be a choice for a next-generation TDR. This promising outcome suggests the feasibility of implanting an additively manufactured multi-material artificial disc that allows for better physiological motion than the current ball-and-socket design.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 10 ( 2022-12-9)
    Abstract: Three key factors are responsible for the biomechanical performance of pedicle screw fixation: screw mechanical characteristics, bone quality and insertion techniques. To the best of the authors’ knowledge, no study has directly compared the biomechanical performance among three trajectories, i.e., the traditional trajectory (TT), modified trajectory (MT) and cortical bone trajectory (CBT), in a porcine model. This study compared the pullout strength and insertion torque of three trajectory methods in single vertebrae, the pullout strength and fixation stiffness including flexion, extension, and lateral bending in a one-level instrumented functional spinal unit (FSU) that mimics the in vivo configuration were clarified. A total of 18 single vertebrae and 18 FSUs were randomly assigned into three screw insertion methods ( n = 6 in each trajectory group). In the TT group, the screw converged from its entry point, passed completely inside the pedicle, was parallel to the superior endplate, was located in the superior third of the vertebral body and reached to at least the anterior third of the vertebral body. In the MT group, the convergent angle was similar to that of the TT method but directed caudally to the anterior inferior margin of the vertebral body. The results of insertion torque and pullout strength in single vertebrae were analyzed; in addition, the stiffness and pullout strength in the one-level FSU were also investigated. This study demonstrated that, in single vertebrae, the insertion torque was significantly higher in CBT groups than in TT and MT groups ( p & lt; 0.05). The maximal pullout strength was significantly higher in MT groups than in TT and CBT groups ( p & lt; 0.05). There was no significant difference in stiffness in the three motions among all groups. The maximal pullout strength in FSUs of MT and CBT groups were significantly higher than the TT groups ( p & lt; 0.05). We concluded that either MT or CBT provides better biomechanical performance than TT in single vertebrae or FSUs. The lack of significance of stiffness in FSUs among three methods suggested that MT or CBT could be a reasonable alternative to TT if the traditional trajectory was not feasible.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...