GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2003
    In:  Journal of Comparative Neurology Vol. 461, No. 2 ( 2003-06-23), p. 217-235
    In: Journal of Comparative Neurology, Wiley, Vol. 461, No. 2 ( 2003-06-23), p. 217-235
    Abstract: The abnormal organization of the central visual pathways in the albino ferret has been characterized anatomically and physiologically. Recordings in dorsal lateral geniculate nucleus of the albino ferret show that lamina A1, which receives an aberrant projection from the contralateral eye, contains an extensive representation of the ipsilateral visual hemifield with receptive fields located up to 35 degrees from the vertical meridian. This is not the case in pigmented ferrets, for which the vast majority of units, activated through either the contralateral or ipsilateral eye, have receptive fields confined to the contralateral hemifield. The few fields found in the ipsilateral hemifield are driven through the contralateral eye and none is more than 10 degrees from the midline. Cortical topography was studied by making closely spaced electrode penetrations across the area 17/18 border. In pigmented animals, the reversal of topography at the border is characterized by units with receptive fields centered a few degrees into the ipsilateral hemifield. In 22 of 25 albinos, the “Boston” aberrant topography was found: the representation of the vertical meridian is within area 17, rather than at the area 17/18 border. Instead, at the area 17/18 border, there is a reversal in the topographic progression at up to 30 degrees into the ipsilateral hemifield. This pattern was most pronounced in the upper visual field. In agreement with the “Boston” physiology, injections of retrograde tracer made in area 17 usually label neurons in either lamina A or the part of lamina A1 that is aberrantly innervated by the contralateral eye. A column of labeled cells extending through all geniculate layers is rarely seen in albinos, although this is commonly the pattern in pigmented ferrets. J. Comp. Neurol. 461:217–235, 2003. © 2003 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 0021-9967 , 1096-9861
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 1474879-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Association for Research in Vision and Ophthalmology (ARVO) ; 2016
    In:  Journal of Vision Vol. 16, No. 10 ( 2016-08-26), p. 18-
    In: Journal of Vision, Association for Research in Vision and Ophthalmology (ARVO), Vol. 16, No. 10 ( 2016-08-26), p. 18-
    Type of Medium: Online Resource
    ISSN: 1534-7362
    Language: English
    Publisher: Association for Research in Vision and Ophthalmology (ARVO)
    Publication Date: 2016
    detail.hit.zdb_id: 2106064-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2017
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 284, No. 1850 ( 2017-03-15), p. 20170015-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 284, No. 1850 ( 2017-03-15), p. 20170015-
    Abstract: ‘Motion dazzle’ is the hypothesis that predators may misjudge the speed or direction of moving prey which have high-contrast patterning, such as stripes. However, there is currently little experimental evidence that such patterns cause visual illusions. Here, observers binocularly tracked a Gabor target, moving with a linear trajectory randomly chosen within 18° of the horizontal. This target then became occluded, and observers were asked to judge where they thought it would later cross a vertical line to the side. We found that internal motion of the stripes within the Gabor biased judgements as expected: Gabors with upwards internal stripe motion relative to the overall direction of motion were perceived to be crossing above Gabors with downwards internal stripe movement. However, surprisingly, we found a much stronger effect of the rigid pattern orientation. Patches with oblique stripes pointing upwards relative to the direction of motion were perceived to cross above patches with downward-pointing stripes. This effect occurred only at high speeds, suggesting that it may reflect an orientation-dependent effect in which spatial signals are used in direction judgements. These findings have implications for our understanding of motion dazzle mechanisms and how human motion and form processing interact.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Society for Neuroscience ; 2003
    In:  The Journal of Neuroscience Vol. 23, No. 11 ( 2003-06-01), p. 4746-4759
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 23, No. 11 ( 2003-06-01), p. 4746-4759
    Abstract: The responses of simple cells in primary visual cortex to sinusoidal gratings can primarily be predicted from their spatial receptive fields, as mapped using spots or bars. Although this quasilinearity is well documented, it is not clear whether it holds for complex natural stimuli. We recorded from simple cells in the primary visual cortex of anesthetized ferrets while stimulating with flashed digitized photographs of natural scenes. We applied standard reverse-correlation methods to quantify the average natural stimulus that invokes a neuronal response. Although these maps cannot be the receptive fields, we find that they still predict the preferred orientation of grating for each cell very well ( r = 0.91); they do not predict the spatial-frequency tuning. Using a novel application of the linear reconstruction method called regularized pseudoinverse, we were able to recover high-resolution receptive-field maps from the responses to a relatively small number of natural scenes. These receptive-field maps not only predict the optimum orientation of each cell ( r = 0.96) but also the spatial-frequency optimum ( r = 0.89); the maps also predict the tuning bandwidths of many cells. Therefore, our first conclusion is that the tuning preferences of the cells are primarily linear and constant across stimulus type. However, when we used these maps to predict the actual responses of the cells to natural scenes, we did find evidence of expansive output nonlinearity and nonlinear influences from outside the classical receptive fields, orientation tuning, and spatial-frequency tuning.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2003
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...