GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 665 ( 2022-9), p. A36-
    Abstract: Context . Spectroscopic data are necessary to break degeneracies in the asteroseismic modelling of the interior structure in high- and intermediate-mass stars. With the TESS mission, the number of bright intermediate-mass B-type stars with long photometric light curves that are suitable for detailed asteroseismic studies has increased substantially compared to the pre-TESS era. Aims . We derive precise photospheric stellar parameters for a sample of 166 B-type stars with TESS light curves through a homogeneous spectroscopic analysis. The variability types of these sample stars are also classified based on all currently available TESS sectors, and they are ultimately prioritised according to their astrophysical potential. Methods . We obtained high-resolution spectra for all 166 targets with the FEROS spectrograph in the context of a large program. The spectra were reduced with the CERES pipeline, which we adapted to improve the quality of the reduced spectra. These spectra were subsequently analysed with ZETA-P AYNE , a machine-learning-based spectrum analysis algorithm, to infer precise stellar labels for all stars in the sample. Furthermore, the least-squares deconvolution (LSD) method was employed to investigate spectral line profile variability (LPV) and isolate binary systems from presumably single stars. Results . The LSD profile analysis identified 26 spectroscopic double-lined binaries; the remainder of the sample are 42 supergiants in the Large Magellanic Cloud galaxy and 98 Galactic stars, both with and without apparent LPV. For the Galactic single stars and single-lined spectroscopic binaries, we determine their five main surface parameters: effective temperature ( T eff ), surface gravity (log g ), global metallicity ([M/H]), projected rotational velocity ( v sin i ), and microturbulent velocity ( ξ ) with average formal precisions of 70 K, 0.03 dex, 0.07 dex, 8 km s −1 , and 0.7 km s −1 , respectively. The average internal uncertainties we find for FEROS spectra with our spectrum analysis method are 430 K( T eff ), 0.12 dex (log g ), 0.13 dex ([M/H]), 12kms −1 ( v sin i ), and 2 kms −1 ( ξ ). Conclusions . We find spectroscopic evidence that 8 of the 98 galactic single or SB1 variables are fast-rotating gravity-mode pulsators occurring in between the slowly pulsating B (SPB) stars and δ Scuti instability strips. The g -mode frequencies of these pulsators are shifted to relatively high frequency values due to their rotation, and their apparently too low T eff relative to the SPB instability region can in most cases be explained by the gravity darkening effect. We also discover 13 new HgMn stars in the Galactic sample of which only one is found in a spectroscopic binary, resulting in a biased and therefore unreliable low binary rate of only 8%.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 626-9
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 676 ( 2023-8), p. A85-
    Abstract: Context. Modern stellar structure and evolution theory suffers from a lack of observational calibration for the interior physics of intermediate- and high-mass stars. This leads to discrepancies between theoretical predictions and observed phenomena that are mostly related to angular momentum and element transport. Analyses of large samples of massive stars connecting state-of-the-art spectroscopy to asteroseismology may provide clues as to how to improve our understanding of their interior structure. Aims. We aim to deliver a sample of O- and B-type stars at metallicity regimes of the Milky Way and the Large Magellanic Cloud (LMC) galaxies with accurate atmospheric parameters from high-resolution spectroscopy, along with a detailed investigation of line-profile broadening, both for the benefit of future asteroseismic studies. Methods. After describing the general aims of our two Large Programs, we develop a dedicated methodology to fit spectral lines and deduce accurate global stellar parameters from high-resolution multi-epoch UVES and FEROS spectroscopy. We use the best available atmosphere models for three regimes covered by our global sample, given its breadth in terms of mass, effective temperature, and evolutionary stage. Results. Aside from accurate atmospheric parameters and locations in the Hertzsprung-Russell diagram, we deliver detailed analyses of macroturbulent line broadening, including estimations of the radial and tangential components. We find that these two components are difficult to disentangle from spectra with signal-to-noise ratios of below 250. Conclusions. Future asteroseismic modelling of the deep interior physics of the most promising stars in our sample will provide much needed information regarding OB stars, including those of low metallicity in the LMC.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 626-9
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences
    Abstract: KIC 4150611 is a high-order multiple composed of a triple system.\ It comprises: (1) a F1V primary (Aa) that is eclipsed on a 94.2d period by a tight 1.52d binary composed of two dim K/M dwarfs (Ab1 and Ab2), which also eclipse each other; (2) an 8.65d eccentric, eclipsing binary composed of two G stars (Ba and Bb); and (3) another faint eclipsing binary composed of two stars of unknown spectral type (Ca and Cb). In addition to its many eclipses, the system is an SB3 spectroscopic multiple (Aa, Ba, and Bb), and the primary (Aa) is a hybrid pulsator that exhibits high amplitude pressure and gravity modes. In aggregate, this richness in physics offers an excellent opportunity to obtain a precise physical characterisation of some of the stars in this system. In this work we aim to characterise the F1V primary by modelling its complex eclipse geometry and disentangled stellar spectra in preparation for follow-up work that will focus on its pulsations. We employed a novel photometric analysis of the complicated eclipse geometry of Aa to obtain the orbital and stellar properties of the triple. We acquired 51 TRES spectra at the Fred L. Whipple Observatory, calculating radial velocities and orbital elements of Aa (SB1) and the B binary (SB2). These spectra and radial velocities were used to perform spectral disentangling for Aa, Ba, and Bb. Spectral modelling was applied to the disentangled spectrum of Aa to obtain atmospheric properties. From our eclipse modelling we obtain precise stellar properties of the triple, including the mass ratios ($M_ Aa /(M_ Ab1 +M_ Ab2 Ab1 /M_ Ab2 the separation ratio Aab /a_ Ab1Ab2 0.01$), orbital periods Aab Ab1Ab2 and stellar radii ( R R R Via radial velocity fitting and spectral disentangling, we find orbital elements for Aa, Ba, and Bb that are in excellent agreement with each other and with previous results in the literature. Spectral modelling on the disentangled spectrum of Aa provides constraints on the effective temperature eff K), surface gravity (log$(g) = 4.14 0.18$ dex), micro-turbulent velocity micro rotation velocity ($v i = 127 and metallicity M/H
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2024
    detail.hit.zdb_id: 626-9
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 683 ( 2024-3), p. A252-
    Abstract: Context . Eclipsing spectroscopic double-lined binaries are the prime source of precise and accurate measurements of masses and radii of stars. These measurements provide a stringent test for models of stellar evolution that are consistently reported to contain major shortcomings. Aims . The mass discrepancy observed for eclipsing spectroscopic double-lined binaries is one of the manifestations of the shortcomings in stellar evolution models. The problem reflects the inability of the models to accurately predict the effective temperature and surface gravity or luminosity of a star for a given mass. Our ultimate goal is to provide an observational mapping of the mass discrepancy and to propose a recipe for its solution. Methods . We initiated a spectroscopic monitoring campaign of 573 candidate eclipsing binaries classified as such based on their TESS light curves. In this work, we present a sub-sample of 83 systems for which orbital phase-resolved spectroscopy has been obtained and subsequently analysed with the methods of least-squares deconvolution and spectral disentangling. In addition, we employed TESS space-based light curves to provide photometric classification of the systems according to the type of their intrinsic variability. Results . We confirmed 69 systems as being either spectroscopic binaries or higher-order multiple systems. We classified twelve stars as single, and we found two more objects that cannot be decisively classified as intrinsically variable single or binary stars. Moreover, 20 eclipsing binaries were found to contain at least one component that exhibits stellar oscillations. Spectroscopic orbital elements were obtained with the spectral disentangling method and reported for all systems classified as either SB1 or SB2. The sample presented in this work contains both detached and semi-detached systems and covers a range in the effective temperature and mass of the star of T eff ∊ [7000,30 000] K and M ∊ [1.5, 15] M ⊙ , respectively. Conclusions . Based on a comparison of our own results with those published in the literature for well-studied systems, we conclude that there is an appreciable capability of the spectral disentangling method to deliver precise and accurate spectroscopic orbital elements from as few as six to eight orbital phase-resolved spectroscopic observations. Orbital solutions obtained this way are accurate enough to deliver age estimates with an accuracy of 10% or better for intermediate-mass F-type stars, an important resource for the calibration of stellar evolution models for future space-based missions, such as PLATO. Finally, despite the small size relative to the 573 systems that we will ultimately monitor spectroscopically, the sample presented in this work is already suitable to kick off observational mapping of the mass discrepancy in eclipsing binaries.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2024
    detail.hit.zdb_id: 626-9
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...