GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 20 ( 2020-10-26), p. 12093-12114
    Abstract: Abstract. Iodine chemistry has noteworthy impacts on the oxidising capacity of the marine boundary layer (MBL) through the depletion of ozone (O3) and changes to HOx (OH∕HO2) and NOx (NO∕NO2) ratios. Hitherto, studies have shown that the reaction of atmospheric O3 with surface seawater iodide (I−) contributes to the flux of iodine species into the MBL mainly as hypoiodous acid (HOI) and molecular iodine (I2). Here, we present the first concomitant observations of iodine oxide (IO), O3 in the gas phase, and sea surface iodide concentrations. The results from three field campaigns in the Indian Ocean and the Southern Ocean during 2015–2017 are used to compute reactive iodine fluxes in the MBL. Observations of atmospheric IO by multi-axis differential optical absorption spectroscopy (MAX-DOAS) show active iodine chemistry in this environment, with IO values up to 1 pptv (parts per trillion by volume) below latitudes of 40∘ S. In order to compute the sea-to-air iodine flux supporting this chemistry, we compare previously established global sea surface iodide parameterisations with new region-specific parameterisations based on the new iodide observations. This study shows that regional changes in salinity and sea surface temperature play a role in surface seawater iodide estimation. Sea–air fluxes of HOI and I2, calculated from the atmospheric ozone and seawater iodide concentrations (observed and predicted), failed to adequately explain the detected IO in this region. This discrepancy highlights the need to measure direct fluxes of inorganic and organic iodine species in the marine environment. Amongst other potential drivers of reactive iodine chemistry investigated, chlorophyll a showed a significant correlation with atmospheric IO (R=0.7 above the 99 % significance level) to the north of the polar front. This correlation might be indicative of a biogenic control on iodine sources in this region.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Earth System Science Data Vol. 11, No. 3 ( 2019-08-21), p. 1239-1262
    In: Earth System Science Data, Copernicus GmbH, Vol. 11, No. 3 ( 2019-08-21), p. 1239-1262
    Abstract: Abstract. Iodide in the sea-surface plays an important role in the Earth system. It modulates the oxidising capacity of the troposphere and provides iodine to terrestrial ecosystems. However, our understanding of its distribution is limited due to a paucity of observations. Previous efforts to generate global distributions have generally fitted sea-surface iodide observations to relatively simple functions using proxies for iodide such as nitrate and sea-surface temperature. This approach fails to account for coastal influences and variation in the bio-geochemical environment. Here we use a machine learning regression approach (random forest regression) to generate a high-resolution (0.125∘×0.125∘, ∼12.5km×12.5km), monthly dataset of present-day global sea-surface iodide. We use a compilation of iodide observations (1967–2018) that has a 45 % larger sample size than has been used previously as the dependent variable and co-located ancillary parameters (temperature, nitrate, phosphate, salinity, shortwave radiation, topographic depth, mixed layer depth, and chlorophyll a) from global climatologies as the independent variables. We investigate the regression models generated using different combinations of ancillary parameters and select the 10 best-performing models to be included in an ensemble prediction. We then use this ensemble of models, combined with global fields of the ancillary parameters, to predict new high-resolution monthly global sea-surface iodide fields representing the present day. Sea-surface temperature is the most important variable in all 10 models. We estimate a global average sea-surface iodide concentration of 106 nM (with an uncertainty of ∼20 %), which is within the range of previous estimates (60–130 nM). Similar to previous work, higher concentrations are predicted for the tropics than for the extra-tropics. Unlike the previous parameterisations, higher concentrations are also predicted for shallow areas such as coastal regions and the South China Sea. Compared to previous work, the new parameterisation better captures observed variability. The iodide concentrations calculated here are significantly higher (40 % on a global basis) than the commonly used MacDonald et al. (2014) parameterisation, with implications for our understanding of iodine in the atmosphere. We envisage these fields could be used to represent present-day sea-surface iodide concentrations, in applications such as climate and air-quality modelling. The global iodide dataset is made freely available to the community (https://doi.org/10/gfv5v3, Sherwen et al., 2019), and as new observations are made, we will update the global dataset through a “living data” model.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2021
    In:  Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 477, No. 2247 ( 2021-03), p. 20200824-
    In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 477, No. 2247 ( 2021-03), p. 20200824-
    Abstract: Iodine is a critical trace element involved in many diverse and important processes in the Earth system. The importance of iodine for human health has been known for over a century, with low iodine in the diet being linked to goitre, cretinism and neonatal death. Research over the last few decades has shown that iodine has significant impacts on tropospheric photochemistry, ultimately impacting climate by reducing the radiative forcing of ozone (O 3 ) and air quality by reducing extreme O 3 concentrations in polluted regions. Iodine is naturally present in the ocean, predominantly as aqueous iodide and iodate. The rapid reaction of sea-surface iodide with O 3 is believed to be the largest single source of gaseous iodine to the atmosphere. Due to increased anthropogenic O 3 , this release of iodine is believed to have increased dramatically over the twentieth century, by as much as a factor of 3. Uncertainties in the marine iodine distribution and global cycle are, however, major constraints in the effective prediction of how the emissions of iodine and its biogeochemical cycle may change in the future or have changed in the past. Here, we present a synthesis of recent results by our team and others which bring a fresh perspective to understanding the global iodine biogeochemical cycle. In particular, we suggest that future climate-induced oceanographic changes could result in a significant change in aqueous iodide concentrations in the surface ocean, with implications for atmospheric air quality and climate.
    Type of Medium: Online Resource
    ISSN: 1364-5021 , 1471-2946
    Language: English
    Publisher: The Royal Society
    Publication Date: 2021
    detail.hit.zdb_id: 209241-4
    detail.hit.zdb_id: 1460987-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Data, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2019-11-26)
    Abstract: The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface ( 〈 20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.
    Type of Medium: Online Resource
    ISSN: 2052-4463
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2775191-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Faraday Discussions, Royal Society of Chemistry (RSC), Vol. 200 ( 2017), p. 195-228
    Type of Medium: Online Resource
    ISSN: 1359-6640 , 1364-5498
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2017
    detail.hit.zdb_id: 1472891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...