GLORIA

GEOMAR Library Ocean Research Information Access

Sie haben 0 gespeicherte Treffer.
Markieren Sie die Treffer und klicken Sie auf "Zur Merkliste hinzufügen", um sie in dieser Liste zu speichern.

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Tilmant, Pascal  (6)
  • 2010-2014  (6)
Materialart
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 2010-2014  (6)
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    The Electrochemical Society ; 2013
    In:  ECS Meeting Abstracts Vol. MA2013-02, No. 24 ( 2013-10-27), p. 1875-1875
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2013-02, No. 24 ( 2013-10-27), p. 1875-1875
    Kurzfassung: Abstract not Available.
    Materialart: Online-Ressource
    ISSN: 2151-2043
    Sprache: Unbekannt
    Verlag: The Electrochemical Society
    Publikationsdatum: 2013
    ZDB Id: 2438749-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    The Electrochemical Society ; 2014
    In:  ECS Meeting Abstracts Vol. MA2014-02, No. 3 ( 2014-08-05), p. 172-172
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2014-02, No. 3 ( 2014-08-05), p. 172-172
    Kurzfassung: Continuous progresses in micro/nanofabrication have led to the multiplication of MicroElectroMechanical Systems (MEMS). This trend meets the growing demand in miniaturized electronic devices with multiple on-board functionalities: sensors, actuators, computing and wireless communicating systems. Providing autonomy to these smart microsystems integrated in a few cubic centimeters or less is still a challenge. To fulfill the need of a high power at the microscale, electrochemical micro-supercapacitors seem to be good candidates. Although 3D-microbatteries (1) recently shows great power performances, the stability upon cycling is not demonstrated, the current trend to maximize the power on a small footprint area ( 〈 1 cm²) is to develop micro-supercapacitors with three-dimensional (3D) architectures (2, 3). For supercapacitors, carbon-based materials (4, 5), conducting polymer (6) and metal oxides (7, 8) are the most widely studied materials. Among metal oxides, ruthenium oxide (RuO 2 ) has high metallic conductivity and the highest specific capacitance (9), but its cost force to investigate other pseudocapacitive materials. Although manganese dioxide (MnO 2 ) capacitance is not as high as RuO 2 , its cost effectiveness and its capacitance above 300 F/g reported for thin films produced by electrodeposition (10, 11) make it an attractive material in order to build a 3D microsupercapacitor : electrodeposition is a suitable technique to make a conformal deposit on a 3D substrate. An attractive approach is to generate a 3D array of microstructures (walls, trenches, pillars) by a Deep Reactive-Ion Etching (DRIE) of a silicon wafer, thus having much more surface area per footprint than a classical 2D-substrate. In this study, we designed an original 3D array of high aspect ratio and dense silicon micropillars and microtubes (figure 1). This topology have several advantages: microstructures, are more robust than nanostructures, thus longer straight structures can be produced without sticking. The silicon substrate is firstly coated by atomic layer deposition of a platinum (Pt) layer which acts as a current collector, and then MnO 2 conformal deposition is reached by pulsed electrodeposition means. In the present study, we will focus on one MnO 2 electrode which will be investigated in standard 3 electrodes cell configuration (liquid electrolyte) in order to validate the use and advantages of the designed 3D topology: significant improvement of the MnO 2 surface capacitance is really obtained as shown in figure 2. Nevertheless, the aim of our group is to produce by microfabrication processes a complete micro-supercapacitor with 3D interdigitated electrodes. A mixing between material science and microelectronics facilities should open the road to the fabrication of a 3D micro-supercapacitor based on MnO 2 electrodes with interdigitated structures as shown in figure 3. Acknowledgments: The authors want to thank the French network of the electrochemical energy storage (RS2E) for this support. This research is financially supported by the ANR and the DGA within the MECANANO project (ANR-12-ASTR-0032-01). The French RENATECH network and the CPER CIA are greatly acknowledged. 1. J. H. Pikul, H. Gang Zhang, J. Cho, P. V. Braun and W. P. King, Nature communications , 4 , 1732 (2013). 2. C. Shen, X. Wang, W. Zhang and F. Kang, Journal of Power Sources , 196 , 10465 (2011). 3. M. Beidaghi, W. Chen and C. Wang, Journal of Power Sources , 196 , 2403 (2011). 4. E. Frackowiak and F. Béguin, Carbon , 39 , 937 (2001). 5. M. Heon, S. Lofland, J. Applegate, R. Nolte, E. Cortes, J. D. Hettinger, P.-L. Taberna, P. Simon, P. Huang, M. Brunet and Y. Gogotsi, Energy & Environmental Science , 4 , 135 (2011). 6. D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau and D. Bélanger, Journal of The Electrochemical Society , 150 , A747 (2003). 7. B. E. Conway, V. Birss and J. Wojtowicz, Journal of Power Sources , 66 , 1 (1997). 8. M. Toupin, T. Brousse and D. Bélanger, Chemistry of Materials , 16 , 3184 (2004). 9. K. Naoi and P. Simon, Interface , 17 , 34 (2008). 10. S. C. Pang, M. A. Anderson and T. W. Chapman, J. Electrochem. Soc. , 147 , 444 (2000). 11. C. C. Hu and T. T. Tsou, Electrochemistry Communications , 4 , 105 (2002).
    Materialart: Online-Ressource
    ISSN: 2151-2043
    Sprache: Unbekannt
    Verlag: The Electrochemical Society
    Publikationsdatum: 2014
    ZDB Id: 2438749-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: ECS Transactions, The Electrochemical Society, Vol. 58, No. 10 ( 2013-08-31), p. 119-129
    Kurzfassung: The proposed study deals with the design, the fabrication and the characterization of 3D silicon microstructures decorated with step conformal and pin hole free anatase TiO 2 negative electrode deposited by atomic layer deposition. A high aspect ratio and dense array of 3D silicon micropillars or microtubes are fabricated on silicon wafer. The obtained surface capacity of the TiO 2 layer (150nm) deposited on 3D microtubes (area enlargement factor =25) reaches 0.15 mAh/cm 2 at C/4. The reported 3D topologies enhance the capacity of standard TiO 2 2D thin film electrode.
    Materialart: Online-Ressource
    ISSN: 1938-5862 , 1938-6737
    Sprache: Unbekannt
    Verlag: The Electrochemical Society
    Publikationsdatum: 2013
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Advanced Energy Materials, Wiley, Vol. 4, No. 8 ( 2014-06), p. 1301612-
    Materialart: Online-Ressource
    ISSN: 1614-6832
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2014
    ZDB Id: 2594556-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2014-02, No. 5 ( 2014-08-05), p. 448-448
    Kurzfassung: With the development of energy autonomous systems (sensors, connected objects, active RFID…), the interest for energy storage devices as microbatteries is growing. Such batteries are based on lithium technologies. Classically, a thin film lithium microbattery consists of the deposition on a substrate of several functional layers such as 2 current collectors, a positive and a negative (lithium metal) electrodes separated by a solid electrolyte (fig. 1). Our study focuses on sputtered thin films deposited on a silicon substrate (figure 1). To prevent the lithium diffusion from the active layers to the silicon substrate, a diffusion barrier layer should be integrated in the structure. Titanium Nitride (TiN) is really developed in microelectronics and TiN could be used both as a current collector and as lithium diffusion barrier (1) for the negative electrode (2, 3). The purpose of this study is to understand the influence of deposition parameters on the titanium nitride characteristics in order to get low resistivity and low electrochemically active thin film against lithium ion insertion. To do so, experiments have been led to get resistivity and Li-capacity as function of the deposition parameters. Structural properties such as crystalline texture, roughness and microstructure have been also studied (figure 2). Prior to the thin film deposition of gold materials and their electrochemical characterization, in operando X ray diffraction measurement has been performed on a gold foil in order to clearly understand the structural evolution of the lithium-gold alloys (4). As in the lithium-silicon alloys, the understanding is really complicated and the number of publications is limited (5-7): ours conclusion and results will be presented. Then, a negative gold electrode has been deposited on the TiN current collector by sputtering means. It has been shown that the electrochemical study is quite difficult if the gold thin film is deposited directly on the silicon wafer owing to the lithium-silicon alloys. It has been demonstrated the benefit from the TiN layer by TOF-SIMS measurement where the lithium ion bas been blocked in the gold electrode due to the TiN barrier layer. Galvanostatic cycling tests has been carried out on the gold electrode and two plateaus have been highlighted corresponding to the lithium-poor and lithium-rich gold phases. The reversibility of these two plateaus have been studied in liquid (1M LITFSI/EC/DEC) as well as in solid (sputtered LIPON) electrolytes and will be presented. Finally, the C-LiFePO 4 positive electrode has been studied by RF and pulsed DC magnetron sputtering deposition means. The electrochemical (cyclic voltammetry, galvanostatic cycling) experiments on the thin films as a function of the deposition parameters (figure 3) will also be reported. Micro-patterning of the C-LiFePO 4 layer has been realized for the first time by deep reactive ion etching. All the building blocks mixing material deposition/characterization and microelectronic fabrication have been developed in this study and paves the ways to the technological fabrication of thin film lithium-ion microbattery based on this technology. Acknowledgments: The authors want to thank the French network of the electrochemical energy storage (RS2E) for this support. This research is financially supported by the ANR and the DGA within the MECANANO project (ANR-12-ASTR-0032-01). The French RENATECH network and the CPER CIA are greatly acknowledged. 1. L. Baggetto, R. A. H. Niessen, F. Roozeboom and P. H. L. Notten, Advanced Functional Materials , 18 , 1057 (2008). 2. S.-K. Rha, W.-J. Lee, D.-I. Kim, S.-Y. Lee, D.-W. Kim, Y.-S. Hwang, S.-S. Chun and C.-O. Park, Thin Solid Films , 320 , 134 (1998). 3. V. Chakrapani, F. Rusli, M. A. Filler and P. A. Kohl, Journal of Power Sources , 216 , 84 (2012). 4. A. D. Pelton, Bulletin of Alloy Phase Diagrams 7 , 228 (1986). 5. G. Taillades, N. Benjelloun, J. Sarradin and M. Ribes, Solid State Ionics 152–153 , 119 (2002). 6. T. L. Kulova, A. M. Skundin, V. M. Kozhevin, D. A. Yavsin and S. A. Gurevich, Russian Journal of Electrochemistry , 46 , 877 (2010). 7. A. Gohier, B. Laïk, J.-P. Pereira-Ramos, C. S. Cojocaru and P. Tran-Van, Journal of Power Sources , 203 , 135 (2012).
    Materialart: Online-Ressource
    ISSN: 2151-2043
    Sprache: Unbekannt
    Verlag: The Electrochemical Society
    Publikationsdatum: 2014
    ZDB Id: 2438749-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    The Electrochemical Society ; 2013
    In:  ECS Meeting Abstracts Vol. MA2013-02, No. 9 ( 2013-10-27), p. 619-619
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2013-02, No. 9 ( 2013-10-27), p. 619-619
    Kurzfassung: Abstract not Available.
    Materialart: Online-Ressource
    ISSN: 2151-2043
    Sprache: Unbekannt
    Verlag: The Electrochemical Society
    Publikationsdatum: 2013
    ZDB Id: 2438749-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...